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Abstract

Consider the following problem: Given a complete geometric graph
with an even number of vertices, can its edge set be partitioned into
plane spanning trees?

In the main part of this thesis we investigate this question for plane
spanning double stars instead of general spanning trees. We give a nec-
essary, as well as a sufficient condition for the existence of a partition
into plane spanning double stars. We also construct complete geomet-
ric graphs with an even number of vertices that cannot be partitioned
into plane spanning double stars.

We then consider the more general problem of packing plane spanning
double stars into complete geometric graphs. We show that finding a
packing with plane spanning double stars is equivalent to finding an
induced subgraph that can be partitioned into plane spanning double
stars. We use this to find large packings with plane spanning double
stars in several special point sets.

In the last part of the thesis, we investigate the above question for
plane spanning paths. We consider complete geometric graphs with only
one vertex not on the boundary of the convex hull, and we give for
these graphs a necessary and sufficient condition for the existence of a
partition into plane spanning paths.

Finally, we show a complexity result about the more general problem
of finding colorings of line segment arrangements without monochro-
matic crossings.
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Chapter 1

Introduction

This thesis is motivated by the following question posed by Bose, Hurtado,
Rivera-Campo and Wood [6]:

Question 1.1 Does every complete geometric graph with an even number of ver-
tices allow a partition of its edge set into plane spanning trees?

Note that a complete geometric graph on n vertices has (n
2) = n

2 (n − 1)
edges, while each spanning tree has n − 1 edges. Thus a partition of the
edge set into spanning trees consists of n

2 pairwise edge-disjoint spanning
trees, which is why we require the number of vertices to be even.

We will discuss this question for special kinds of trees, called double stars,
as well as for paths. We will also consider the more general problem of
partitioning the elements of a line segment arrangements into non-crossing
sub-arrangements.

1.1 Definitions

A point set P is a finite set of points in R2. We say that a point set is in
general position if no three points lie on a line. For the rest of the thesis, we
will assume all point sets to be in general position. We denote the convex
hull of P by Conv(P). An empty convex n-gon in a point set P is a subset P ′
of n points in convex position such that no point of P lies in the interior of
Conv(P ′).
Following Pilz and Welzl [17], for two point sets P and P ′ of equal size, we
call a bijection ϕ from P to P ′ crossing-preserving if for every crossing pair of
line segments (p, q) and (r, s), defined by points p, q, r and s in P , the line
segments (ϕ(p), ϕ(q)) and (ϕ(r), ϕ(s)) cross as well. If there exists such a
bijection, we say that the point set P ′ crossing-dominates the point set P . If P ′
induces more crossings than P , then P ′ strictly crossing-dominates the point
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1. Introduction

set P . The point sets that are not strictly crossing-dominated by any other
point set are called crossing-maximal.

A geometric graph is a drawing of a graph in R2 with straight-line edges, i.e.
the vertex set is a point set and each edge is a line segment. A geometric
graph is called plane or crossing-free if no pair of edges crosses. For two
vertices v and w in a geometric graph G, we say that v sees w in G if the line
segment between v and w is not crossed by any edge of G. Note that we
neither require nor forbid that (v, w) is an edge of G.

The complete geometric graph K(P) of a point set P is the geometric graph
obtained by drawing a line segment between any two points in P .

A caterpillar is a tree such that the induced subgraph of the vertex set without
the leaves is a path. This induced subgraph is called the spine. A double star
is either a single edge, or a caterpillar whose spine consists of a single edge.
A caterpillar C is symmetric if it has an edge (v, w) such that there is a graph-
isomorphism between the components A and B of C \ (v, w), with v ∈ A
and w ∈ B, that maps v to w.

A partition of the edge set of a graph is a grouping of the edges into sub-
graphs in such a way that every edge is part of exactly one subgraph. A
packing of the edge set of a graph is a grouping of the edges into subgraphs
in such a way that every edge appears in at most one subgraph. A covering
of the edge set of a graph is a grouping of the edges into subgraphs in such
a way that every edge is part of at least one subgraph. In other words, a
partition of the edge set of a graph is both a packing and a covering.

1.2 Structure

The thesis consists of three parts. In the first part we give an introduction to
the topic and the necessary definitions. We also discuss some related results
in Chapter 2.

The second part of the thesis is about double stars. Chapter 3 discusses
partitions of complete geometric graphs into plane spanning double stars.
We show that the spines of the double stars form a perfect matching with
certain properties. We also show that, given a perfect matching in a complete
geometric graph, one can check in polynomial time whether the edges in
this perfect matching are the spines of a partition of the complete geometric
graph into plane spanning double stars. Finally, we give an example of a
point set whose complete geometric graph cannot be partitioned into plane
spanning double stars.

In Chapter 4 we consider packings of plane spanning double stars. We
show that finding a packing with k spanning double stars is equivalent to
finding a matching with k edges that satisfies the same conditions as the
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1.2. Structure

perfect matching for partitions. We prove a lower bound for the expected
number of plane spanning double stars that can be packed into complete
geometric graphs of random point sets, as well as an upper bound for the
smallest number of plane double stars that can be packed into any complete
geometric graph.

In Chapter 5 we use the results from Chapters 3 and 4 to construct packings
for special point sets, namely Horton point sets and point sets with many
halving lines.

The third part of the thesis contains the results that are not about double
stars. In Chapter 6 we discuss partitions into plane spanning paths. We
show that for point sets with exactly one point not on the boundary of the
convex hull, the induced complete geometric graph can be partitioned into
plane spanning paths if and only if the point set is crossing-dominated by
a point set in convex position. We also give an example that this is not true
for point sets with more than one point not on the boundary of the convex
hull.

In Chapter 7 we consider the more general problem of coloring arrange-
ments of line segments in such a way, that we do not get any monochromatic
crossings. We show that it is NP-complete to decide whether a given par-
tial coloring of a line segment arrangement with a fixed number of at least
3 colors can be extended to a complete coloring of the arrangement without
monochromatic crossings.
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Chapter 2

Survey of Related Results

2.1 Plane Spanning Trees in Complete Geometric Graphs

In the paper where the question motivating this thesis is first posed, the au-
thors give a sufficient condition for the existence of a partition of a complete
geometric graph into plane spanning trees:

Theorem 2.1 ([6]) Let P be a point set with n = 2m points. Suppose that there
is a set L of pairwise non-parallel lines with exactly one point of P in each open
unbounded region formed by L. Then K(P) can be partitioned into plane spanning
double stars.

If P has an even number of at most 8 points, then K(P) can always be
partitioned into plane spanning trees [2]. To show that the same holds for
larger point sets, it would be sufficient to find a partition of K(P) into plane
spanning trees for all crossing-maximal point sets P , as shown by Pilz and
Welzl [17].

The case where the point set is in convex position is well understood. Two
graphs drawn on a point set in convex position are called convex isomorphic if
the underlying graphs are isomorphic and the clockwise ordering of the ver-
tices is preserved under this isomorphism. Every complete geometric graph
drawn on a point set of even size in convex position allows partitions into
plane spanning trees, and these partitions can be characterized as follows:

Theorem 2.2 ([6]) Let P be a point set with n = 2m points in convex position.
Let T1, . . . , Tm be a partition of K(P) into plane spanning trees. Then T1, . . . , Tm
are symmetric caterpillars that are pairwise convex isomorphic. Conversely, for
any symmetric caterpillar T on n vertices, K(P) can be partitioned into m plane
spanning copies of T that are pairwise convex isomorphic.

This in particular means that for an even number of points in convex po-
sition, the induced complete geometric graph even allows a partition into
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2. Survey of Related Results

plane spanning paths. This is not true for general point sets, as shown by
Aicholzer et al. [2] On the other hand they prove that at least 2 plane span-
ning paths can be packed into any complete geometric graph with at least 4
vertices. They also show a packing result for general plane spanning trees:

Theorem 2.3 ([2]) Let P be a point set with n points. Then K(P) allows a packing
with

√ n
12 plane spanning trees.

The spanning trees that they construct are double stars, but they also give a
construction for plane spanning trees with lower maximum degree:

Theorem 2.4 ([2]) Let P be a point set with n points and k ≤ √ n
12 . Then K(P)

allows a packing with k plane spanning trees such that the maximum degree of any
tree is in O(k2). Also, the diameter of each tree is in O(log( n

k2 )).

Bose et al. prove a result for coverings, that is similar to Theorem 2.3:

Theorem 2.5 ([6]) Let P be a point set with n points in convex position. Then
K(P) can be covered with n−√ n

12 plane spanning trees.

All these results use the fact that in every complete geometric graph, there
is a set of at least

√ n
12 pairwise crossing edges [4], called a crossing family.

The actual size of the largest crossing family in any complete geometric
graph is conjectured to be significantly larger, and a proof of the existence
of larger crossing families would immediately improve the above theorems
about packings and coverings.

2.2 Plane Spanning Trees in General Geometric Graphs

While it is easy to see that every complete geometric graph contains a plane
spanning tree, there are geometric graphs that do not contain one. An easy
example for such a geometric graph is a straight-line drawing of a tree that
has crossings. A partition of a complete geometric graph into plane span-
ning trees can be thought of as a process of successively taking away plane
spanning trees from a geometric graph, such that the remaining graph still
contains a plane spanning tree. Thus, conditions for the existence of plane
spanning trees in geometric graphs might be of interest when trying to find
partitions. Rivera-Campo and Urrutia-Galicia [19], as well as Rivera-Campo
[18] give sufficient conditions.

Theorem 2.6 ([19]) Let G be a geometric graph with n ≥ 3 vertices with vertex
set P . Let k be the number of empty triangles for which the induced subgraph of G
is not connected. If k ≤ n− 3, then G has a plane spanning tree.

Theorem 2.7 ([18]) Let G be a geometric graph with n ≥ 5 vertices. If every
subgraph of G induced by 5 vertices has a plane spanning tree, then G has a plane
spanning tree.
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2.2. Plane Spanning Trees in General Geometric Graphs

Rivera-Campo [18] also conjectured that if G \ v has a plane spanning tree
for any vertex v of G, then G has a plane spanning tree. But Schüler and
Spillner [20] gave a counterexample to this claim.

On the other hand, Keller et al. [14] gave a necessary condition for the
existence of plane spanning trees in geometric graphs by characterizing the
smallest geometric graphs whose complements contain no plane spanning
trees.

Definition 2.8 Let P be a point set. A plane spanning subgraph C of K(P) is a
comb of K(P) if:

1. The intersection of C with the boundary of Conv(P) is a plane path S and
possibly some isolated vertices.

2. Each vertex that is not in S is connected by a unique edge to an interior vertex
of S.

3. For each edge e of C, the line `e spanned by e does not cross any edge of C.

See Figure 2.1 for an example of a comb. Note that a comb is a caterpillar
with spine S \ {v, w}, where v and w are the endpoints of S.

S

v

w

Figure 2.1: A comb of a complete geometric graph with 10 vertices.

We say that a geometric graph B, drawn on a point set P , blocks the family of
plane spanning trees if it has at least one edge in common with each plane
spanning tree of K(P). We call B a minimal blocker if it has the smallest
number of edges among all graphs that block the family of plane spanning
trees.
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2. Survey of Related Results

Theorem 2.9 ([14]) A geometric graph B drawn on a point set P is a minimal
blocker if and only if it is either a spanning star or a comb of K(P).
Corollary 2.10 Let G be a geometric graph drawn on a point set P . If the comple-
ment G of G contains a comb of K(P) or a spanning star, then G does not contain
a plane spanning tree.

Note that a comb, as well as a spanning star, is a plane spanning tree, so
if G contains a comb of K(P) or a spanning star, then G contains a plane
spanning tree. Károlyi, Pach and Tóth [13] have shown that this is always
true if G does not contain a plane spanning tree.

Theorem 2.11 ([13]) If the edges of a complete geometric graph are colored arbi-
trarily with two colors, then there exists a monochromatic plane spanning tree.

In general, deciding whether a geometric graph contains a plane spanning
tree is NP-complete, as shown by Jansen and Woeginger [12].

2.3 Other Plane Subgraphs

Apart from spanning trees, there are other plane subgraphs that can be con-
tained in a geometric graph or that we can use to construct packings or
coverings. There are results of these types for example for general trees, tri-
angulations or perfect matchings. Aichholzer et al. [1] have considered the
following question: Given a complete geometric graph, how many edges
can be removed such that the remaining graph still contains a certain plane
subgraph? They prove results for the types of subgraphs mentioned above.

Theorem 2.12 ([1]) For 2 ≤ k ≤ n − 1, for every complete geometric graph G
on n vertices, and for every subgraph H of G with at most d kn

2 e − 1 edges, the
geometric graph G \ H contains a plane tree that spans n− k + 1 vertices.

This theorem is tight with respect to the number of edges in H.

Theorem 2.13 ([1]) Let P be a point set of n ≥ 3 points in convex position. Let
A be the set of interior edges of K(P). Let H be a subgraph of K(P) consisting of
at most n− 3 edges of A. Then G \ H contains a triangulation.

Again the theorem is tight with respect to the number of edges in H. The
edges that are not in A can never be removed as they appear in every trian-
gulation. If the point set is not required to be in convex position, then there
might be less edges that can be removed. As with plane spanning trees,
it is NP-complete to decide whether a given geometric graph contains a
triangulation of its vertex set, which was shown by Lloyd [16].

Theorem 2.14 ([1]) For every complete geometric graph G on n = 2m vertices,
and for every subgraph H of G with at most m vertices in each component, the
geometric graph G \ H contains a plane perfect matching.
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2.3. Other Plane Subgraphs

For plane perfect matchings, Biniaz, Bose, Maheshwari and Smid [5] have
also investigated the packing problem and they have found upper and lower
bounds.

Theorem 2.15 ([5]) There exist point sets P with n = 2m ≥ 6 points such that
no more than d n

3 e plane perfect matchings can be packed into K(P).

Theorem 2.16 ([5]) Let P be a point set with n = 2m points. Then at least
dlog2 ne − 2 plane perfect matchings can be packed into K(P).
As every perfect matching consists of n

2 edges, no more than n − 1 plane
perfect matchings can be packed into a complete geometric graph. Biniaz
et al. [5] prove that the maximum number of perfect matchings that can be
packed into a complete geometric graph is between n

2 and n− 1, where the
lower bound is attained for a complete geometric graph drawn on a point
set in convex position. We are able to improve this result and show that the
upper bound n− 1 is tight.

Remark 2.17 There exist point sets P with n = 2m points such that K(P) can be
partitioned into plane perfect matchings.

Proof Let P ′ be a point set of n − 1 points in convex position. As n is
even, n− 1 is odd and we can construct n− 1 pairwise edge-disjoint plane
matchings on K(P ′) such that for every point p in P ′ there is exactly one
matching where p has degree 0. Place P ′ on a semi-circle and place a last
point q such that q sees every point of P ′ in K(P ′ ∪ {q}) (See Figure 2.2).
For every p ∈ P ′, add the edge (p, q) to the unique matching where p has
degree 0. This gives n− 1 pairwise edge-disjoint plane perfect matchings on
a point set with n points. �

Figure 2.2: A complete geometric graph on 6 vertices that allows a partition into plane perfect
matchings.
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2. Survey of Related Results

2.4 Edge-coloring Geometric Graphs

A partition of a geometric graph with an even number n of vertices into
plane spanning trees induces a coloring of its edges with n

2 colors that has
no monochromatic crossings. If the vertices are in convex position, then
the complete geometric graph has a set of n

2 pairwise crossing edges, thus
any such coloring requires at least n

2 colors. On the other hand, there are
complete geometric graphs whose edge sets can be colored with d n

4 e colors
without getting monochromatic crossings [7]. It is still an open question
whether every complete geometric graph can be colored with n

2 colors with-
out monochromatic crossings.

A different way of stating this problem is to ask for the chromatic number
of the interior intersection graph of a complete geometric graph. The interior
intersection graph I of a geometric graph G is constructed by defining a
vertex ve for each segment e in G, and defining an edge between two vertices
ve and v f in I if the corresponding segments e and f in G cross. If we also
define edges between vertices in I corresponding to incident segments in
G, we get the so called intersection graph of a geometric graph. Araujo et
al. [3] have shown that the chromatic number of the intersection graph of
a complete geometric graph on n vertices lies between n and cn

3
2 for some

constant c > 0. Note that a lower bound of n− 1 is trivial, as each vertex of
a complete geometric graph is incident to n− 1 edges.

By slightly shrinking each segment in G, we can turn the problem of deter-
mining the chromatic number of the interior intersection graph of a complete
geometric graph G into a problem of finding the chromatic number of the in-
tersection graph of a line segment arrangement with distinct endpoints. The
chromatic number of the intersection graph of line segment arrangements is
in general not bounded by the size of the largest clique, but Fox and Pach
[10] have shown that it cannot be arbitrarily large, even for a more general
setting. They consider graphs G that are Kk-free intersection graph of con-
vex sets in the plane, where Kk-free means that G does not contain a clique
of size k. For any such graph G, the bound the chromatic number χ(G) of
G.

Theorem 2.18 ([10]) If G is a Kk-free intersection graph of n convex sets in the
plane, then

χ(G) ≤
(

c
log n
log k

)13 log k

,

where c is an absolute constant.

However, determining the chromatic number of the intersection graph of a
line segment arrangement is NP-complete, as shown by Ehrlich, Even and
Tarjan [9].
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Chapter 3

Partitions into Plane Spanning Double
Stars

In this chapter, we will show that for any partition of a complete geometric
graph into plane spanning double stars, the set of the spines of the double
stars forms a perfect matching, called the spine matching. In order for a
perfect matching to be a spine matching, the matching has to fulfill certain
conditions. We discuss a necessary condition, a sufficient condition, and
we show that we can check in polynomial time whether a given perfect
matching is the spine matching of a partition of a complete geometric graph
into plane spanning double stars.

We start with a few observations that hold for any partition of an (abstract)
complete graph into spanning double stars. Consider a complete graph Kn,
where n is even, and assume that it is partitioned into n

2 spanning double
stars. Let M be the set of the spines of the double stars. Note that |M| = n

2 .

Lemma 3.1 The set of spines M of a partition of Kn into spanning double stars is
a perfect matching.

We will call this perfect matching the spine matching.

Proof We want to show that no two edges of M are incident. Assume for
the sake of contradiction that two edges e = (p, q) and f = (p, r) share an
endpoint p. Let E and F be the spanning double stars with spines e and f ,
respectively. Consider the edge g = (q, r). As all double stars in the partition
must be spanning, the point r must be connected to the edge e, which means
that f ∈ E or g ∈ E. As f is already the spine of F, we conclude that g ∈ E.
On the other hand q must also be connected to the edge f and with the same
argument we conclude g ∈ F, which is a contradiction. �

Lemma 3.2 Let Kn be partitioned into spanning double stars. Then all double stars
in the partition are symmetric.
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3. Partitions into Plane Spanning Double Stars

Proof By Lemma 3.1, any vertex v of Kn is a leaf of n
2 − 1 double stars and

incident to the spine of exactly one double star D. Thus, as every edge in Kn
belongs to some double star, the degree of v in D must be n− 1− ( n

2 − 1) =
n
2 . �

Actually, we could have also proved Lemma 3.1 with an easy degree argu-
ment: If two spines in M were incident, then there would be a vertex v that
is not incident to any spine. Thus v is a leaf in every spanning double star
in the partition and therefore has degree n

2 , which is a contradiction, as we
know that v has degree n− 1. However, the proof above will be handy when
we discuss packings with plane spanning double stars in Chapter 4.

Combining the two lemmas, we get the following result:

Corollary 3.3 Let Kn be partitioned into spanning double stars and let V ′ be the
vertices of any subset of the spine matching M. Then the induced subgraph on V ′

inherits a partition into symmetric spanning double stars.

Proof Color each double star in the partition with a different color, includ-
ing red. Now delete the vertices incident to the red spine and consider the
colored subgraph induced by the remaining vertices. Clearly, this subgraph
contains no red edges, as each red edge is incident to the red spine. Also, all
deleted edges that are not red must be leaf edges, as we know from Lemma
3.1 that no two spines are incident. Thus the remaining graph is still parti-
tioned into plane spanning double stars, and by Lemma 3.2 all double stars
in the partition are symmetric. The result follows by induction. �

For abstract complete graphs, every perfect matching M is a spine matching
of a partition into spanning double stars: Let each edge in M have a different
color. We want to color the remaining edges of the complete graph in such a
way that each color class is a spanning double star with spine in M. Consider
the K4 induced by two edges in M, colored red and blue. Then the remaining
edges in the K4 have to be colored red and blue as well. Fixing the color of
one of the remaining edges of the induced K4 already determines the colors
of all edges (see Figure 3.1). Thus, for any two edges in M, there are exactly
two ways to color the remaining edges in the induced K4. Doing this for
every pair of edges in M, we get a coloring of the complete graph and it is
easy to see that each color class is indeed a spanning double star. As there
are two possibilities to color the remaining edges of the K4 induced by any
two edges in M, we conclude that any perfect matching M with m edges is
the spine matching of 2(

m
2 ) different partitions into spanning double stars.

However, for complete geometric graphs, we also want every spanning dou-
ble star in the partition to be plane. Unfortunately, there are geometric
matchings for which all of the 2(

m
2 ) possible partitions into spanning double

stars contain at least one crossing double star. This motivates the following
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Figure 3.1: Choosing a color for one of the remaining edges determines the color of the other
three. The edges in M are drawn thick.

definition: Let M be a geometric matching and P its set of vertices. We call
the matching M expandable if it is the spine matching of a partition of K(P)
into plane spanning double stars. In order to find conditions for a matching
to be expandable, we will now also consider the geometrical properties of a
geometric graph.

Let e be an edge between two points p and q. The supporting line `e of e is
the line through p and q.

Let e and f be two edges and let s be the intersection of their supporting
lines. If s lies in both e and f , we say that e and f cross. If s lies in f but not
in e, we say that e stabs f and we call the vertex of e that is closer to s the
stabbing vertex of e. If s lies neither in e nor in f , or even at infinity, we say
that e and f are parallel. See Figure 3.2 for an illustration.

Note that our notion of parallel is not transitive. Also note that the intersec-
tion s of the supporting lines of two non-incident edges never coincides with
a point in the point set, as we assume the point set to be in general position.

e

f

s

f

e
s f

e

s

v

e and f cross e stabs f with stabbing vertex v e and f are parallel

Figure 3.2: Crossing, stabbing and parallel edges

Lemma 3.4 A (geometric) matching M consisting of two edges a and b is expand-
able if and only if a and b are not parallel.

17



3. Partitions into Plane Spanning Double Stars

Proof First assume that a and b are parallel. We show that then M is not
expandable.

Let a = (p, q) be red and b = (r, s) blue. As a and b are parallel, the
points p, q, r and s form a convex quadrilateral, implying that K({p, q, r, s})
has a crossing. We try to construct a partition of K({p, q, r, s}) into plane
spanning double stars. Assume without loss of generality that the edges
(p, s) and (q, r) cross. Then they cannot have the same color, so without
loss of generality let (p, s) be red and let (q, r) be blue. Then the edge (q, s)
cannot be red as there would be a red triangle otherwise. By the same
argument the edge (q, s) also cannot be blue. Thus K({p, q, r, s}) cannot be
partitioned into plane spanning double stars.

Now assume that a and b are not parallel. Then they are either stabbing or
crossing. In both cases M is expandable, as can be seen in Figure 3.3. �

Figure 3.3: Any pair of crossing or stabbing edges is expandable. The spines are drawn thick.

In Figure 3.3 we also see that a matching consisting of two edges that are
stabbing or crossing is the spine matching of two different partitions into
plane spanning double stars.

For any edge e = (p, q) in a double star D with spine (q, r), we say that e is
a left edge (of D) if the ordered triple (r, q, p) encodes a left turn. Otherwise
we call e a right edge (of D). Consider a partition of a geometric K4 into plane
spanning double stars with spines e and f . We say that the pair {e, f } is left-
oriented if there are more left edges than right edges in the partition. If there
are more right edges than left edges, we call the pair right-oriented. Given
two edges a and b in any matching M that are either stabbing or crossing, we
say that we left-orient (right-orient) the pair {a, b} if we partition the induced
K4 in such a way that the pair {a, b} is the spine matching and the pair {a, b}
is left-oriented (right-oriented).

Note that in Figure 3.3 the first and third partition have a left-oriented spine
matching and the second and fourth partition have a right-oriented spine
matching. Also note that for the left-oriented crossing spines, all remaining
edges are left edges, whereas for the left-oriented stabbing spines there is a
right edge, and symmetrically for the right-oriented partitions. The follow-
ing lemma makes this a bit more precise.
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3.1. A necessary condition

Lemma 3.5 Consider a partition of a geometric K4 into plane spanning double
stars with spines a, colored red, and b, colored blue, and assume that the pair {a, b}
is left-oriented (right-oriented). Let E be the set of edges in the K4 apart from a and
b. There is a blue right (left) edge in E if and only if a stabs b. Also, if a stabs b,
then the blue right (left) edge is incident to the stabbing vertex of a.

Proof We will proof this lemma for the left-oriented case. The right-oriented
case is symmetrical. By Lemma 3.4, a and b are either stabbing or crossing
and therefore the pair {a, b} can indeed be left-oriented.

If a stabs b, it is clear from Figure 3.3 that there is a blue right edge that is
incident to the stabbing vertex of a. If however a does not stab b, then either
b stabs a or a and b cross. If b stabs a, then the only right edge in E is red. If
a and b cross, all edges in E are left edges. �

3.1 A necessary condition

We have already seen that a matching consisting of two edges is expandable
if and only if the two edges are not parallel. For larger matchings, the
situation is more complicated, but we can still find some configurations
that cannot occur in the matching. See Figure 3.4 for a drawing of these
configurations.

A cross-blocker is a triple C = {e, f , g} of three pairwise non-incident edges
such that e and f cross, g stabs both e and f , g does not intersect the convex
hull of e and f , and both vertices of g see only one vertex p of e and one
vertex q of f in C.

A stab-blocker is a triple S = {e, f , g} of three pairwise non-incident edges
such that f stabs e, g stabs both f and e, g does not intersect the convex hull
of e and f , and both vertices of g see only one vertex p of e in S.

Lemma 3.6 Let M be a cross-blocker or a stab-blocker. Then M is not expandable.

Proof We start by stating the following easy observation: Let P be a point
set, and let c be a point outside the convex hull of P with the property that
c only sees two vertices a and b of the convex hull of P . Then every edge
incident to c that intersects the convex hull of P crosses the edge (a, b).

Assume first that M = {e, f , g} is a cross-blocker. Let e be red, f blue and g
green. Let p be the vertex of e that is seen by both vertices of g, and let q be
the vertex of f that is seen by both vertices of g. Let r be the vertex of e that
is not seen by the vertices of g and let s be the vertex of f that is not seen by
the vertices of g. Both vertices of g see only two vertices of the convex hull of
e and f , namely p and q. Consider the two edges between r and the vertices
of g. One of these edges has to be green and the other one has to be red.
By the observation above, both these edges cross the edge (p, q), implying
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3. Partitions into Plane Spanning Double Stars

that (p, q) can be neither red nor green. Applying the same argument to the
edges between s and the vertices of g, we also see that (p, q) can be neither
blue nor green. But (p, q) has to be red or blue, and we conclude that M is
not expandable.

Now assume that M = {e, f , g} is a stab-blocker. Let e be red, f blue and g
green. Let p be the vertex of e that is seen by both vertices of g and let q be
the vertex of f that lies on the boundary of the convex hull of e and f . Let r
be the vertex of e that is not seen by the vertices of g and let s be the vertex
of f that lies inside the convex hull of f and g. Again, both vertices of g
see only two vertices of the convex hull of e and f , namely p and q and by
considering the edges between r and the vertices of g, as well as the edges
between s and the vertices of g, we can again see that the edge (p, q) can be
neither green, red nor blue. But again (p, q) has to be red or blue, and we
conclude that M is not expandable. �

e
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g

a cross-blocker a stab-blocker

p

q

r

s

p r

q

s

Figure 3.4: A cross-blocker (left) and a stab-blocker(right)

We are now ready to prove the main theorem of this section:

Theorem 3.7 Let K(P) be partitioned into plane spanning double stars. Then the
corresponding spine matching M

• does not contain two parallel edges,

• does not contain a cross-blocker and

• does not contain a stab-blocker.

Proof By Lemma 3.4 and Lemma 3.6, none of the three configurations is
expandable. But, by Corollary 3.3, a partition of K(P) into plane spanning
double stars would induce a partition of the induced subgraph of the con-
figuration into plane spanning double stars. �
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3.2. A sufficient condition

This allows us to construct a point set whose complete geometric graph
cannot be partitioned into plane spanning double stars. For every k > 0, we
define the bumpy wheel set BWk as follows:

Place k− 1 points in convex position and partition them into three sets A1,
A2, A3 of consecutive points such that ||Ai| − |Aj|| ≤ 1, i 6= j. Let Hi, be the
convex hull of ∪j 6=i Aj. Place the last point p in the interior such that it lies
outside of Hi for all i ∈ {1, 2, 3}. See Figure 3.5 for a depiction of BW10.

Theorem 3.8 For every k ≥ 9, the complete geometric graph K(BWk) cannot be
partitioned into plane spanning double stars.

Proof If k is odd, then it is clear that K(BWk) cannot be partitioned into
plane spanning double stars. So assume that k is even, and thus k ≥ 10.

Consider any perfect matching M on BWk and assume for the sake of contra-
diction that it is expandable. We can assume without loss of generality that
the interior point p is matched with a point in A1 by an edge e. We claim that
there are at least two edges between points in A2 ∪ A3. Any point in A2 ∪ A3
that is not matched with another point in A2 ∪ A3 must be matched with a
point in A1. Thus the number of points in A2 ∪ A3 that are matched with
another point in A2 ∪ A3 is at least |A2|+ |A3| − (|A1| − 1). We want to show
that |A2|+ |A3| − (|A1| − 1) ≥ 4, or equivalently |A2|+ |A3| − |A1| ≥ 3. As-
sume without loss of generality that A3 does not have more points than A2.
If |A2| ≥ 4, we have |A2|+ |A3| − |A1| ≥ |A2| − 1 ≥ 3. If however |A2| < 4,
then, as we assumed that A3 does not have more points than A2, we must
have k = 10. Thus in this case we have |A1| = |A2| = |A3| = 3 and thus
|A2|+ |A3| − |A1| = 3.

Hence, there are at least two edges between points in A2 ∪ A3. As the set
A2 ∪ A3 is in convex position, these two edges are either parallel, or they
cross. If they are parallel or one of them is parallel to e, we get a contradic-
tion to Theorem 3.7. However, if they cross and neither of them is parallel to
e, then those three edges form a cross-blocker, which is again a contradiction
to Theorem 3.7. Thus M is not expandable. As this is true for any perfect
matching on BWk, we deduce that K(BWk) cannot be partitioned into plane
spanning double stars. �

3.2 A sufficient condition

We will show that if a perfect matching on a point set P satisfies certain
conditions, then it can be expanded to a partition of K(P) into plane span-
ning double stars. But first we start with some definitions and a preliminary
lemma:

21



3. Partitions into Plane Spanning Double Stars

A1

A2

A3

H1

Figure 3.5: The point set BW10 (left) and a cross blocker in a matching on this point set (right)

Lemma 3.9 (Cross-Stab-Lemma) Consider three edges, e, f and g, where f and
g cross and f stabs e with stabbing vertex v. Let C be the convex hull of e and g.
Then v ∈ C.

Proof Let a be the intersection of ` f and `g and let b be the intersection of
` f and `e. Note that a lies on f and g and b lies on e. The stabbing vertex v
must lie between a and b, and as a and b are in C, it follows that also v is in
C. �

A stabbing chain are three edges, e, f and g, where e stabs f and f stabs g.
We call f the middle edge of the stabbing chain. If also g stabs e we call the
three edges a stabbing cycle.

See Figure 3.6 for a drawing of some stabbing chains. Note that a stabbing
cycle can be seen as three stabbing chains where each edge is the middle
edge in one of the stabbing chains.

e

e

e

f
f

f
g

g
g

Figure 3.6: Two different stabbing chains (left and middle) and a stabbing cycle (right)

We are now ready to state the sufficient condition:
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3.2. A sufficient condition

Theorem 3.10 Let P be a point set. If there exists a perfect matching M on P ,
such that

(a) no two edges are parallel,

(b) if an edge e stabs two other edges f and g, then the respective stabbing vertices
of e lie inside the convex hull of f and g, and

(c) if there is a stabbing chain, then the stabbing vertex of the middle edge lies inside
the convex hull of the other two edges,

then M is expandable.

Note that a stab-blocker is a stabbing chain that satisfies condition (c), but
not (b).

The theorem follows immediately from the following lemma:

Lemma 3.11 Let P be a point set and let M be a perfect matching on P that
satisfies (a), (b) and (c). Then left-orienting each pair of edges in M induces a
partition of K(P) into plane spanning double stars.

Proof As no two edges in the matching M are parallel, we can indeed left-
orient each pair and this induces a partition of K(P) into spanning double
stars, where M is the spine matching. It remains to show that all the double
stars are plane. Assume for the sake of contradiction that there is a red
double star with spine e = (p, q) that has two crossing edges (p, r) and (q, s).
Then one of the edges has to be a left edge and the other one has to be a
right edge. Assume without loss of generality that (p, r) is a left edge and
(q, s) is a right edge.

Both r and s are incident to a spine in M. If they are incident to the same
spine, then, as p, q, r and s form a convex quadrilateral, this spine is parallel
to e, which is a contradiction to condition (a). So assume that s is incident to
a blue spine f and r is incident to a green spine g = (r, t). As (q, s) is a right
edge, by Lemma 3.5 f must stab e with stabbing vertex s. As (p, r) is a left
edge, again by Lemma 3.5, g cannot stab e with stabbing vertex r. However,
g might stab e with stabbing vertex t. Also, by condition (a), e and g cannot
be parallel. We distinguish the different remaining cases for the spines e and
g. See Figure 3.7 for an illustration of the cases.

Case 1: e and g cross. Let H be the convex hull of e and g. If e and g cross,
then (p, r) bounds H. As (p, r) and (q, s) cross, the line through p and r
separates the points q and s. As q is incident to e, q lies in H and thus s
cannot lie in H. Consider the spines f and g. If they are parallel, we get a
contradiction to condition (a). If f stabs g, then by condition (b) the point
s must be in H, so we again get a contradiction. If g stabs f , then f is the
middle edge of the stabbing chain defined by g, f and e, and by condition
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3. Partitions into Plane Spanning Double Stars

(c), s must lie in H, which is a contradiction. Finally, if f and g cross, then
by the Cross-Stab-Lemma s must lie in H, which is again a contradiction.

Case 2: e stabs g with stabbing vertex q. Let H be the convex hull of e and
g. If e stabs g with stabbing vertex q, then H is a triangle with vertices p, r
and t. Thus again (p, r) bounds H, and as q is in H we can again deduce
that s is not in H. We can now continue analogous to case 1.

Case 3: e stabs g with stabbing vertex p. Consider the convex hull of f
and g and denote it by H′. We claim that p cannot lie in H′. Let `g be the
supporting line of g. If `g separates p and s, then f stabs g with stabbing
vertex s and thus g bounds H′. As s is in H′, p cannot be in H′. If `g
does not separate p and s, then either f and g cross or f stabs g but the
stabbing vertex is not s. In both cases the edge (r, s) bounds H′. Also the
line through r and s separates p and t. As t is in H′ we conclude that p is not
in H′. So p indeed cannot lie in H′. But e is the middle edge of the stabbing
chain defined by f , e and g, so by condition (c), p must lie in H′. This is a
contradiction.

Case 4: g stabs e with stabbing vertex t. Let H be the convex hull of e and
g. If g stabs e with stabbing vertex t, H is a triangle with vertices p, r and q.
Thus again (p, r) bounds H, and as q is in H we can again deduce that s is
not in H and we can again continue analogous to case 1.

We have thus proven by contradiction that each double star in the partition
is indeed plane. �

Using Theorem 3.10 we can reprove a sufficient condition for the existence
of a partition into plane spanning double stars from Bose et al. [6].

Theorem 3.12 ([6]) Let P be a point set with an even number n of points. Suppose
that there is a set L of n

2 pairwise non-parallel lines with exactly one point of P in
each open unbounded region formed by L. Then K(P) can be partitioned into plane
spanning double stars.

Proof Let C be a circle such that all points of P as well as all intersections
of lines in L lie inside of C. The intersection points of C and the lines in L
partition C into consecutive components C1, . . . , Cn, each corresponding to
an unbounded region. Let pi be the point in the unbounded region corre-
sponding to Ci. For every i ∈ {1, . . . , n

2}, match pi with p n
2 +i. This induces a

perfect matching M on P . Note that each line in L is a halving line and that
each edge in M intersects all lines in L. We will show that this matching
is expandable by proving that it satisfies the conditions (a), (b) and (c) of
Theorem 3.10.

We start with condition (a). Pick two edges e = (p, q) and f = (r, s) from M
and two lines `1 and `2 from L, with the property that one of the endpoints
of e and f lies in each unbounded region defined by `1 and `2. Assume
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Figure 3.7: The cases in the proof of Lemma 3.11

without loss of generality that `1 is horizontal and `2 is vertical. Let p be
in the bottom left region and let r be in the bottom right region. Then q is
in the top right region and s is in the top left region. Assume without loss
of generality that e intersects the top left region and let T1 be the triangle
bounded by e, `1 and `2. If s lies in T1, then f stabs e. Assume without loss
of generality that f intersects the top right region and let T2 be the triangle
bounded by f , `1 and `2. If q lies in T2, then e stabs f . If s does not lie in T1
and q does not lie in T2, then e and f cross. Thus any two edges in M are
either crossing or stabbing, and thus M satisfies condition (a) of Theorem
3.10.

Now we show that M satisfies conditions (b) and (c) by proving that for
three edges e, f and g, with f stabbing e, the stabbing vertex of f lies in
the convex hull of e and g. So, pick three edges e = (p, q), f = (r, s) and
g = (t, u) from M and three lines `1, `2 and `3 from L, with the property that
one of the endpoints of e, f and g lies in each unbounded region defined by
`1, `2 and `3. Assume without loss of generality that f stabs e with stabbing
vertex s. Let A1, . . . , A6 be the unbounded regions defined by `1, `2 and `3,
and assume without loss of generality that s ∈ A1, p ∈ A2, t ∈ A3, r ∈ A4,
q ∈ A5 and u ∈ A6. Let `1 be the line separating A1, A2 and A3 from A4,
A5 and A6. Let `2 be the line separating A2, A3 and A4 from A1, A5 and A6.
Finally, let `3 be the line separating A3, A4 and A5 from A1, A2 and A6. See
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3. Partitions into Plane Spanning Double Stars

Figure 3.8 for an illustration.

As f stabs e with stabbing vertex s, the edge e must intersect A1. Let R be
the part of A1 that is bounded by e and note that s lies in R. Let H be the
convex hull of e and g. We will show that R ⊂ H. Consider the edge (q, t).
This edge does not intersect the line `3 as q ∈ A5 and t ∈ A3. Similarly, the
edge (p, t) does not intersect the line `2. Let T be the triangle defined by the
edges (q, t), (p, t) and e = (p, q). As (q, t) does not cross `3 and (p, t) does
not cross `2, we deduce that R ⊂ T. Clearly T ⊂ H. Thus we see that R ⊂ H
and as s lies in R, s also lies in H. Thus for any three edges e, f and g, with
f stabbing e, the stabbing vertex of f lies inside the convex hull of e and g.
This proves that M satisfies the conditions (b) and (c) of Theorem 3.10. �
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Figure 3.8: Illustration of the proof of Theorem 3.12

As we have seen in the last section, not all point sets allow an expandable
perfect matching. However the requirement for a perfect matching to be
parallel-free is not a big constraint.

Remark 3.13 Every point set of even size allows a parallel-free perfect matching.

Proof Let M be a perfect matching that maximizes the sum of the lengths of
all edges. We claim that M is parallel-free. Assume for the sake of contradic-
tion that two edges e and f in M are parallel. Then their endpoints form a
convex quadrilateral Q. Delete e and f from the matching and instead insert
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3.3. Recognizing expandable matchings

the two crossing edges defined by Q. This gives us a new matching M′ and
by the triangle inequality the sum of the lengths of all edges in M′ is higher
than the sum of the lengths of all edges in M, which is a contradiction to the
choice of M. �

3.3 Recognizing expandable matchings

So far in this chapter we have seen necessary and sufficient conditions for
matchings to be expandable. In this section we will consider the decision
problem where, given a perfect matching on a point set P in general position,
we want to decide whether it is expandable. We will show that we can solve
this problem in polynomial time.

Recall that for any two edges in a perfect matching, colored with two dif-
ferent colors, choosing a color for one of the four remaining edges of the
induced K4 already determines the color of all uncolored edges of this K4.
Thus there are exactly two possibilities for coloring the four remaining edges
for each pair of edges in the matching. For the case where the two edges are
not parallel, we called the two options ”left-oriented” and ”right-oriented”.
Expanding a parallel-free perfect matching to a partition into spanning dou-
ble stars is thus just choosing for each pair of edges in the matching, whether
the pair is left-oriented or right-oriented. The given perfect matching is then
the spine matching of the partition.

Consider now the partition given by such a choice of orientation of each pair
of spines in M, where M is parallel-free, and assume there is a monochro-
matic crossing, let us say of color red. Then, as M is parallel-free, the two
crossing red edges a and b are incident to exactly three spines: both edges
are incident to the red spine e, and each edge is incident to another spine,
let us assume that a is incident to the blue spine f , and b is incident to the
green spine g. The fact that both a and b are red already determines the
orientation of the pairs {e, f } and {e, g}, as a is part of the K4 induced by
e and f and b is part of the K4 induced by e and g. Also, changing one or
both orientations would give a partition where a and b have different colors.
We call a set consisting of three spines e, f , g and two edges a, b a potential
monochromatic crossing if a and b cross, a is incident to f , b is incident to g,
and both a and b are incident to e.

Theorem 3.14 Given a perfect matching M on a point set P of size n, it is possible
to decide in polynomial time whether this perfect matching can be expanded to a
partition of K(P) into plane spanning double stars.

Proof First, we check whether the perfect matching has any parallel edges.
For this we just check for each pair of edges in M whether they are parallel.
As the size of M is n

2 , there are (
n
2
2) ∈ O(n2) pairs so this step takes time
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3. Partitions into Plane Spanning Double Stars

O(n2). If any two edges in M are parallel, we know by Theorem 3.7 that M
is not expandable.

If M is parallel-free, we define a variable x(e, f ) for every pair {e, f } of edges
in M. We will define a boolean formula F that is satisfiable if and only
if M is expandable. For every triple {e, f , g} of edges in M we check
whether this triple is part of a potential monochromatic crossing. If the
triple (e, f , g) is part of a potential monochromatic crossing with both cross-
ing edges incident to e, consider the orientations that make this crossing
monochromatic. Define a clause C = {l(e, f ) ∨ l(e,g)}, where l(e, f ) = ¬x(e, f ) if
{e, f } is left-oriented and l(e, f ) = x(e, f ) otherwise, and analogously for l(e,g).
Define F as the conjunction of all these clauses. Note that F is a 2-CNF
with O(n2) variables and O(n3) clauses. If F has a satisfying assignment
{x(e, f ) = a(e, f )}e, f∈M, then we can left-orient every pair of edges {e, f } with
a(e, f ) = 1 and right-orient all other pairs in M, and by the construction of F
this choice of orientation does not induce any monochromatic crossing. On
the other hand, if M is expandable, then there is a choice of orientation for
each pair {e, f } such that there is no monochromatic crossing, thus setting
x(e, f ) = 1 if and only if the pair {e, f } is left-oriented satisfies F. As F is a
2-CNF we can decide whether it is satisfiable in time linear in the number
of clauses which gives us a total runtime of O(n3). �

28



Chapter 4

Packings of Plane Spanning Double
Stars

In Chapter 3 we have seen that there are point sets BWk whose complete
geometric graphs cannot be partitioned into plane spanning double stars.
However, one can check that if k is even, we can still pack k

2 − 1 plane span-
ning double stars into K(BWk). On the other hand, as only one point is not
on the boundary of the convex hull, there clearly is a subset of k− 2 points
whose complete geometric graph can be partitioned into again k

2 − 1 plane
spanning double stars. As it turns out, this is not a coincidence.

Consider a point set P of size n and a packing of k plane spanning double
stars into K(P). Let M be the set of spines of the double stars. We again see
that M must be a matching.

Lemma 4.1 The set of spines M of a packing of k plane spanning double stars into
K(P) is a matching.

Proof Analogous to the proof of Lemma 3.1. �

Corollary 4.2 Let P be a point set that allows a packing of k plane spanning double
stars into K(P). Then there is a subset P ′ of P of size 2k that allows a partition of
K(P ′) into plane spanning double stars.

Proof Choose P ′ as the set of vertices of the spine matching M. �

On the other hand, we can expand a partition on a subset to a packing on
the whole point set.

Lemma 4.3 Let P be a point set and let P ′ be a subset of P of size 2k that allows
a partition of K(P ′) into plane spanning double stars. Then P allows a packing of
k plane spanning double stars into K(P).
For an illustration of the proof see Figure 4.1
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4. Packings of Plane Spanning Double Stars

Proof Consider an edge e in the spine matching M and a point p in P \ P ′.
Let E be the plane double star with spine e = (q, r) and let f = (p, q) and
g = (p, r) be the edges connecting the point p to the spine e. In order to
expand E to a plane spanning double star, we have to add either f or g to E
without creating a crossing. Assume for the sake of contradiction that both
f and g cross an edge of E. Let s and t be the intersections of f and g with
E, respectively. Note that the edge of E that crosses f must be incident to
r. Similarly, the edge of E that crosses g is incident to q. As q, r, s and
t form a convex quadrilateral, we deduce that E is not plane, which is a
contradiction. By induction we can therefore expand E to a plane spanning
double star. As the spines form a matching we can do this for every double
star in the partition of the subset and the claim follows. �

q r
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e

f
g
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t

Figure 4.1: Illustration of the proof of Lemma 4.3

Combining Corollary 4.2 and Lemma 4.3 we get the following result:

Theorem 4.4 Let P be a point set. Then K(P) allows a packing of k plane span-
ning double stars if and only if there is a subset P ′ of P of size 2k that allows a
partition of K(P ′) into plane spanning double stars.

4.1 Packing Plane Spanning Double Stars into Random
Point Sets

We define a random point pr by picking a and ϕ uniformly and independently
at random from the intervals [0, 1] and [0, 2π] respectively and then setting

pr = (
√

a cos(ϕ),
√

a sin(ϕ)).

A random point set Pr of n points is the union of n independent random
points. Note that a random point set is in general position with probability
1.

Combining Theorem 3.12 with Theorem 4.4, we conclude that the existence
of k lines with the property that there is at least one point of P in each
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4.1. Packing Plane Spanning Double Stars into Random Point Sets

unbounded region of the arrangement of the lines, implies that K(P) allows
a packing with k plane spanning double stars.

Theorem 4.5 For a random point set Pr, the expected number of plane spanning
double stars that can be packed into K(Pr) is at least b n

4 c.

Proof Order the points by their angles ϕ modulo π. For each point in this
order write a 1 if the angle is smaller than π and a 0 otherwise. This induces
a random binary string b1b2 . . . bn with P[bi = 1] = P[bi = 0] = 1

2 . Consider
an alternating substring b of even length 2k and assume without loss of
generality that it starts with a 0. Let ϕ1, . . . , ϕk be the angles of the points
contributing a 1 to the substring. For each i ∈ {1, . . . , k} define a line `i
through the origin such that the angle between `i and the x-axis is ϕi + ε
for some small ε > 0 (see Figure 4.2). Then there is a point contributing to
the substring b in every unbounded region of the arrangement defined by
the lines `1, . . . , `k, and by Theorem 3.12, the complete geometric graph on
these points can be partitioned into plane spanning double stars. Therefore,
by Theorem 4.4, K(Pr) allows a packing with k plane spanning double stars.
As in a random binary string the expected length of a longest alternating
substring is b n

2 c, the theorem follows. �
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Figure 4.2: Illustration of the proof of Theorem 4.5
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4. Packings of Plane Spanning Double Stars

Note that the lines that we constructed in the proof are concurrent. For
general point sets, this restriction is rather strong and not necessary for our
purposes.

4.2 Point Sets that only allow small Packings with Plane
Spanning Double Stars

In Chapter 3 we constructed point sets BWk whose complete geometric
graphs only allow packings with k

2 − 1 plane spanning double stars. But
there are point sets where the largest packings with plane spanning double
stars are even smaller.

For any m ∈N, define a point set Rm as follows: Place 9m points in convex
position, partitioned into three sets Ai, i ∈ {1, 2, 3}, of 3m consecutive points
each. Then place a set B of m points in the interior, such that for any b ∈ B
and any union Ai ∪ Aj, b lies outside of the convex hull of Ai ∪ Aj. See
Figure 4.3 for an illustration.

A1

A2

A3

B

Figure 4.3: A point set whose complete geometric graph only allows a packing with 9
20 n plane

spanning double stars

We will show that any expandable matching on R2k can have at most 9k
edges. As R2k has n = 20k points, this implies that at most 9

20 n plane
spanning double stars can be packed into K(R2k). But we first need to
prove two auxiliary lemmas.

32
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Lemma 4.6 Let M be a perfect matching on Rm that has no edge between two
points in B. Then we need to take away at least m edges from M in order to be left
with an expandable matching.

Proof We prove this by induction on m. For m = 1 the point set R1 is
exactly the point set BW10.

For the inductive step, assume that m ≥ 2. Let A′i, i ∈ {1, 2, 3}, be the
subset of points of Ai that are not matched with a point in B. Note that
2m ≤ |A′i| ≤ 3m and 5m ≤ |A′i ∪ A′j| ≤ 6m, i 6= j, and |⋃3

i=1 A′i| = 8m. Let
E1 be the set of edges in M between points in A′1 and let F1 be the set of
edges in M between a point in A′2 and a point in A′3. Define E2, E3, F2 and
F3 analogously. As |⋃3

i=1 A′i| = 8m, we have that |⋃3
i=1 Ei ∪

⋃3
j=1 Fj| = 4m.

Also, as |A′i| ≤ 3m, for i, j and k all different we have |Ei ∪ Fj ∪ Fk| ≤ 3m and
in particular |Fj ∪ Fk| ≤ 3m.

Note that any edges e ∈ Ei and f ∈ Fi are parallel. The same holds for any
edges e ∈ Ei and f ∈ Ej, where i 6= j. Also, any edge between B and Ai is
parallel to any edge in Ej for i 6= j. Recall that by Theorem 3.7 no two edges
in an expandable matching can be parallel.

First assume that there is an i such that there is an edge e between B and
Ai, |Fi| ≥ 2 and |Fj| ≥ 1 for j 6= i. We will call this assumption the subset
assumption. Without loss of generality let i = 1. Let M′ consist of the edge
e, as well as two edges in F1, one edge of F2 and one edge of F3. Then the
vertex set of M′ is R1 and the vertex set of M \ M′ is Rm−1. Thus, by the
inductive hypothesis, we need to take away at least one edge from M′ and
at least m− 1 edges from M \M′ in order to get an expandable matching.

We will now consider the cases where the subset assumption is not satisfied.
First, assume that without loss of generality |F1| = 0. As |A′2 ∪ A′3| ≥ 5m and
|F2 ∪ F3| ≤ 3m, we deduce that |E2 ∪ E3| ≥ m. Note that every edge in E2 is
parallel to any edge in E3 ∪ E1 ∪ F2 and every edge in E3 is parallel to any
edge in E2 ∪ E1 ∪ F3. Thus, if we want to leave any edge in E2, we have to
take away all edges in E3 ∪ E1 ∪ F2. But as |E2 ∪ F3| = |E2 ∪ F3 ∪ F1| ≤ 3m, we
have |E3 ∪ E1 ∪ F2| ≥ m. The same argument applies if we want to leave any
edge in E3. The only other thing that we can do is to take away the edges
in E2 ∪ E3, and we have seen before that |E2 ∪ E3| ≥ m. Thus if |Fi| = 0
for some i, we also need to take away at least m edges in order to get an
expandable matching.

So, from now on we can assume that none of the Fi’s is empty. Suppose now
that |F1| = |F2| = |F3| = 1. Then |Ei| ≥ m− 1 for i ∈ {1, 2, 3}. As any edge
in Ei is parallel to any edge in Ej for i 6= j, we have to take away all edges of
Ei ∪ Ej for some i, j ∈ {1, 2, 3} with i 6= j. As each Ei has size |Ei| ≥ m− 1,
we deduce that in this case we need to take away at least 2m− 2 ≥ m edges
in order to get an expandable matching.
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4. Packings of Plane Spanning Double Stars

This means that we can also assume that there are at least 2 edges in some
Fi. Hence if there is an edge between B and Aj for every j, then the subset
assumption is satisfied. So, assume without loss of generality that there is
no edge between B and A1. Then there either are edges between B and A2
and B and A3, or without loss of generality all edges incident to a point in
B are between B and A3.

First assume that there is no edge between B and A1, i.e. |A′1| = 3m, but
there are edges between B and A2 and B and A3. If |F2| ≥ 2 or |F3| ≥ 2,
then the subset assumption is satisfied, so assume that |F2| = |F3| = 1. This,
together with |A′1| = 3m, implies that |E1| = 3m−2

2 ≥ m. Let G be the set
of edges incident to a point in B. Note that |G| = m. As there is no edge
between B and A1, any edge in G is parallel to any edge in E1. Thus we
either have to take away every edge in G or every edge in E1. So again we
need to take away at least m edges in order to get an expandable matching.

Finally, assume that all edges incident to a point in B are without loss of
generality between B and A3, i.e. |A′3| = 2m. If |F3| ≥ 2, then the subset
assumption is satisfied, so assume |F3| = 1. As |A′3| = 2m, we deduce that
|E3 ∪ F1 ∪ F2| ≤ 2m and thus |F3 ∪ E1 ∪ E2| ≥ 2m. As |F3| = 1 we thus have
that |E1 ∪ E2| ≥ 2m− 1 ≥ m. Let again G be the set of edges incident to a
point in B. As all edges in G are between B and A3, any edge in G is parallel
to any edge in E1 ∪ E2, so again we need to take away either all of G or all of
E1 ∪ E2. As both sets contain at least m edges, we again need to take away
at least m edges in order to get an expandable matching. This concludes the
inductive step. �

Lemma 4.7 Let k ∈ N and let V1, V2, V3 be pairwise disjoint point sets with
4k + 2 ≤ |Vi| ≤ 6k for every i ∈ {1, 2, 3}. Let N be a perfect matching on
V = V1 ∪ V2 ∪ V3. Then there exists a sub-matching N′ ⊂ N such that N′ has
exactly 6 vertices in each Vi.

Proof First note that for k = 1 we have |Vi| = 6 for every i and we can thus
choose N′ = N.

Assume for the sake of contradiction that there is a counterexample to the
claim for some k ≥ 2 and consider the smallest k for which such a coun-
terexample exists. For this k, let V1, V2, V3 be the three sets in a counterex-
ample with the smallest number of points and let N be the corresponding
matching. At least one Vi must have size |Vi| > 6k − 6, as else N would
already be a counterexample for k − 1. Assume without loss of generality
that |V1| = 6k−m for some 0 ≤ m ≤ 5. Note that there can be no edge in
N between two points in V1, as else we could remove this edge and get a
smaller counterexample. Similarly, we must have |V2| = |V3| = 4k + 2, as
else we could take away an edge between V1 and V2 or V3 and get a smaller
counterexample.
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We claim that we can take away 6− m edges from N that are incident to a
point in V1 and get a counterexample for k − 1, which would be a contra-
diction. As we noted before, there are no edges between two points in V1,
so there are 6k − m edges that we could remove. However, we need to be
careful that both V2 and V3 have size at least 4(k − 1) + 2 = 4k − 2. For
m ≥ 2, this is not a problem, as we do not need to remove more than
four edges. For m = 0 or m = 1 we note that there must be at least
6k − m − (4k + 2) = 6k − m − 2 ≥ 2 − m edges between V1 and V2, and
analogously for V1 and V3. Hence we can without loss of generality remove
4 edges between V1 and V2 and 2−m edges between V1 and V3, and we get
a counterexample for k− 1, which is a contradiction to our choice of k. �

We are now ready to prove the main result of this section.

Theorem 4.8 There are point sets P of size n = 20k with the property that at most
9
20 n plane spanning double stars can be packed into K(P).
Proof For any k, consider the point set R2k and note that it indeed has 20k
points. Let M be any perfect matching on R2k. We claim that we need to
take away at least k edges from M in order to be left with an expandable
matching. We prove this claim by induction on k.

For k = 1, consider a perfect matching M on the point set R2. If there is
no edge in M between the two points in B, then Lemma 4.6 implies that we
need to take away at least two edges from M to get an expandable matching.
So, assume that there is an edge between the two points in B. If two edges
in M are parallel, we need to take away at least one edge of M to get an
expandable matching. If no edges in M are parallel, then without loss of
generality there are two edges e and f between A1 and A2 that cross. Then
e and f form a cross-blocker together with the edge between the two points
in B. So also in this case we need to take away at least one edge of M to get
an expandable matching, which concludes the base case.

For the inductive step, assume that the claim is true for k − 1. Consider a
perfect matching M on the point set R2k. If there is no edge in M between
two points in B, then Lemma 4.6 implies that we need to take away at least
2k edges from M to get an expandable matching. So, assume that there is
an edge e between two points in B. By Lemma 4.7, there is a subset M′ ⊂ M
of the perfect matching M such that the vertex set of M′ ∪ {e} is R2. Then
the vertex set of M \ (M′ ∪ {e}) is R2(k−1). By the inductive hypothesis we
need to take away at least k− 1 edges from M \ (M′ ∪ {e}) and at least one
edge from M′ ∪ {e}. So in total, we need to take away at least k edges from
M to get an expandable matching, which concludes the inductive step.

So, any expandable matching on R2k has at most 10k − k = 9k edges and
thus at most 9k = 9

20 n plane spanning double stars can be packed into
K(R2k). �
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Chapter 5

Packing Plane Double Stars into
special Point Sets

In this chapter we will use the results on expandable matchings of the previ-
ous chapters to construct large expandable matchings on two special types
of point sets: Horton point sets and point sets with many halving lines.

5.1 Horton Point Sets

Horton Point Sets [11] are sets of points with no empty convex 7-gon. They
are constructed as follows:

Definition 5.1 (Horton Point Set) For any k, let a1a2 . . . ak be the binary repre-
sentation of the integer i, 0 ≤ i < 2k, including leading 0’s. Define c = 2k + 1 and
d(i) = ∑k

j=1 ajcj−1. Let pi be the point (i, d(i)). The Horton Point Set Sk is the set
of points {pi | 0 ≤ i < 2k}
See Figure 5.1 for a (scaled) picture of S4.

The Horton Point Sets Sk have some nice properties, as proved in [11]. We
will use that

1. L = {pi | i < 2k−1} is the left half of Sk,

2. R = {pi | i ≥ 2k−1} is the right half of Sk,

3. B = {pi | i is even} is the bottom half of Sk,

4. T = {pi | i is odd} is the top half of Sk,

5. all points of T are above any line through two points in B, and

6. all points of B are below any line through two points in T.

Theorem 5.2 For any integer k, K(Sk) can be partitioned into plane spanning
double stars.
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p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

Figure 5.1: A qualitative depiction of the Horton Point Set S4

Proof For every i, 0 ≤ i < 2k−1, match pi with p2k−1−i. We claim that any
two edges in this perfect matching M cross.

We start by making two easy observations. If i is even then 2k − 1− i is odd,
whereas if i is odd then 2k − 1− i is even, implying that for any edge in
M one endpoint is in B and the other one is in T. Also, any subset of four
points consisting of two points b1 and b2 in B and two points t1 and t2 in T
form a convex quadrilateral as both t1 and t2 lie above the line through b1
and b2 and both b1 and b2 lie below the line through t1 and t2, which means
that the segments (b1, b2) and (t1, t2) are parallel.

Consider the edges ei and ej in M with respective left endpoints pi and pj,
where i < j. Then pi lies to the left of pj, while p2k−1−i lies to the right of
p2k−1−j. If both i and j are even, then pi and pj are in B, while p2k−1−i and
p2k−1−j are in T. Since pi lies to the left of pj but p2k−1−i lies to the right
of p2k−1−j, and the four point form a convex quadrilateral, the two edges ei
and ej must cross. The same argument holds if both i and j are odd. If on
the other hand i is even and j is odd, or i is odd and j is even, then without
loss of generality pi is in B and pj is in T. Thus p2k−1−i is in T and p2k−1−j
is in B. Also, pi and pj are in L, while p2k−1−i and p2k−1−j are in R. Hence
both edges ei and ej cross any line separating L and R, as well as any line
separating B and T. Together with the fact that the points pi, pj, p2k−1−i and
p2k−1−j form a convex quadrilateral, this again implies that the two edges
cross.
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We deduce that any two edges in M cross, i.e. M is a crossing family. Hence
M satisfies the conditions of Theorem 3.10 and can thus be expanded to a
partition of K(Sk) into plane spanning double stars. �

5.2 Point Sets with many Halving Lines

We now consider point sets with many halving lines as constructed by Edels-
brunner and Welzl [8], which we will call EW-sets. For n points, these point
sets have Ω(n log n) halving lines. They are constructed inductively.

First, consider three rays emanating from the origin, with any two rays en-
closing an angle of 2π

3 . Place two points on every ray such that no two points
coincide and no point coincides with the origin. This point set is Q1 and is
depicted in Figure 5.2. Given Qk−1, we now construct Qk. Consider again
three rays emanating from the origin, with any two rays enclosing an angle
of 2π

3 . For each ray, draw a small wedge with angle ε containing the ray.
Place a copy of Qk−1 in each wedge, flattened by an affine transformation
in such a way that any line through two points in one of the copies of Qk−1
separates the other two copies. This new point set is Qk. Note that Qk has
2 · 3k points.

Qk−1

Figure 5.2: The point sets Q1 (left) and Qk (right)

We will again construct an expandable matching on these point sets. For
this we first need to name a few configurations. For a drawing of these
configurations, see Figure 5.3.

A Y-configuration is a triple Y = {e, f , g} of three pairwise non-incident edges
such that e and f cross, g stabs both e and f , g does not intersect the convex
hull of e and f , and both vertices of g see every vertex of e and f in Y.

An A-configuration is a triple A = {e, f , g} of three pairwise non-incident
edges such that f stabs e, and g stabs e and f with different stabbing vertices.
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5. Packing Plane Double Stars into special Point Sets

Note that in an A-configuration, the edge g is completely contained in the
convex hull of the edges e and f , as the intersections of the supporting line
`g of g with e and f lie on different sides of g.

A T-configuration is a triple T = {e, f , g} of three pairwise non-incident edges
such that e and f cross, and both e and f stab g.

g

e
f

e

f

g

g

e f

`g

Figure 5.3: A Y-configuration (left), an A-configuration (middle) and a T-configuration (right)

Lemma 5.3 Let M be a matching of size at least 3 with the property that every
subset of three edges of M is either a crossing family of size 3, a Y-configuration, an
A-configuration or a T-configuration. Then left-orienting each pair of edges induces
a partition of the complete geometric graph of the vertices of M into plane spanning
double stars.

Proof Note that M is parallel-free and thus ”left-orienting” is well defined
for every pair of edges in M. Consider the partition of the complete geo-
metric graph of the vertices of M given by left-orienting each pair in M and
remember that M is now the spine matching. Assume for the sake of con-
tradiction that one of the spanning double stars in the partition is not plane.
Then the two crossing edges are incident to at most three of the spines in M.
Thus there is a subset M′ ⊂ M of size 3 with the property that left-orienting
each pair in M′ induces a monochromatic crossing.

However, we claim that for every possible M′, left-orienting each pair of M′

induces a partition of the complete geometric graph of the vertices of M′ into
plane spanning double stars. For crossing families, A-configurations and T-
configurations the claim follows from Lemma 3.11. For Y-configurations see
Figure 5.4. This gives us a contradiction and we deduce that all spanning
double stars in the partition are indeed plane. �

Lemma 5.4 Let C be the set of two copies of Qk−1 in Qk. Then C has a crossing-
family of size |Qk−1|.
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g

e
f

Figure 5.4: The expansion of a Y-configuration determined by left-orienting each pair of edges

Proof Let A and B be the two copies of Qk−1 and assume without loss of
generality that the rays defining the wedges in which A and B lie both point
upwards. Order the points in A and B by their y-coordinate. Iteratively
match the lowest unmatched point in A with the highest unmatched point
in B to get a matching M. Let e0 = (a0, b0) and e1 = (a1, b1) be two edges
in M with a0, a1 ∈ A, b0, b1 ∈ B and a0 above a1. Then b0 is below b1. By
the construction of the point set, the line through a0 and a1 separates B and
the third copy of Qk−1, while the line through b0 and b1 separates A and the
third copy of Qk−1. This implies that (a0, a1) and (b0, b1) are parallel, hence
the four points a0, a1, b0 and b1 form a convex quadrilateral. As a0 is above
a1 but b0 is below b1, we deduce that the two edges e0 and e1 cross. As this
holds for any two edges in M, the claim follows. �

We are now ready to construct an expandable matching on Qk, see Figure
5.5 for an example of such a matching on Q3.

Let A, B and C be the three copies of Qk−1, with A lying in the wedge WA, B
lying in the wedge WB and C lying in the wedge WC. Assume without loss of
generality that the rays defining WA and WB both point upwards. Then the
ray defining WC points downwards. Let M1 be the crossing family defined
by A ∪ B as constructed in Lemma 5.4. Let C1, C2, C3 be the three copies
of Qk−2 in C, ordered such that the lowest point of Ci lies below the lowest
point of Cj if i < j. Define M2 as the crossing family defined by C1 ∪ C2 and
let M3 be the largest crossing family in C3. Set MQ = M1 ∪ M2 ∪ M3 and
note that |MQ| ≥ n

3 + n
9 + n

27 = 13
27 n, where |Qk| = n.

Theorem 5.5 Let Qk be an EW-set, with |Qk| = n. Then at least 13
27 n plane

spanning double stars can be packed into K(Qk).
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5. Packing Plane Double Stars into special Point Sets

Proof Consider the matching MQ, and remember that |MQ| ≥ 13
27 n. We will

show that MQ is expandable. The result then follows from Theorem 4.4.

We claim that any three edges of MQ either form a crossing family of size
3, a Y-configuration, an A-configuration or a T-configuration. Pick any three
edges in MQ. If they all lie in the same Mi, then they form a crossing family.
If two of them lie in Mi and one in Mj, with i < j, then they form a Y-
configuration. If one of them lies in Mi and two in Mj, again i < j, then they
form a T-configuration. If they all lie in different Mi’s, then they form an
A-configuration. It thus follows from Lemma 5.3 that MQ is expandable. �

It might be possible to add even more edges to the matching MQ without
losing expandability, but we would have to be very careful as we could get
configurations where left-orienting each pair might induce monochromatic
crossings.
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M1

M2

M3

A
B

C1

C2

C3

Figure 5.5: An expandable matching on a qualitative drawing of Q3
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Miscellaneous
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Chapter 6

Partitions into Plane Spanning Paths

In this chapter we consider another special case of trees, namely paths. It is
known that there are point sets whose complete geometric graph cannot be
partitioned into plane spanning paths [2]. In fact, there are point sets that
only allow rather small packings with plane spanning paths:

Remark 6.1 There are point sets of size n, where n is even, whose complete geomet-
ric graph does not allow a packing of more than d n

3 e plane spanning paths.

Proof Each spanning path has n− 1 edges, which is an odd number as n is
even. Thus each spanning path contains a perfect matching, and therefore
a packing of k plane spanning paths induces a packing of k plane perfect
matchings. Biniaz et al. [5] have shown that there are point sets whose
complete geometric graph does not allow a packing of more than d n

3 e plane
perfect matchings. �

On the other hand, for an even number of points in convex position, the com-
plete geometric graph can be partitioned into plane spanning paths [6]. The
same holds for point sets that are crossing-dominated by convex position: if
a point set Q is crossing-dominated by a point set P in convex position, by
definition of crossing-dominance there is a bijection from Q to P such that
any two edges that cross in K(Q) also cross in K(P). Thus any partition of
K(P) into plane spanning paths can be mapped back to K(Q) and all the
paths in the partition stay plane under this mapping.

For any point set P , we denote the set of points that lie on the boundary of
the convex hull of P by Ext(P), and we call a point in Ext(P) an extreme
point. We will prove the following result:

Theorem 6.2 Let W be a point set with |Ext(W)| = |W| − 1. Then K(W)
allows a partition into plane spanning paths if and only ifW is crossing-dominated
by convex position.
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In order to prove this we try to color the edges of the induced geometric
graph of such a point set in a way that each color class is a plane spanning
path. We will then see that the coloring must have a very specific structure
and that the one point that is not in the convex hull can only lie in very few
places. We first start with a few definitions and lemmas.

Let W be a point set with |Ext(W)| = |W| − 1 and |W| = 2n + 2 (this
value is chosen for ease of notation). Denote the points in Ext(W) as
v0, v1, . . . , v2n, enumerated in counter-clockwise order, and let vint be the
point not in Ext(W).

We are given n + 1 colors c[0], . . . , c[n], and we want to assign these colors
to the edges of K(W) in such a way that every edge gets exactly one color
and each color class is a spanning path. For the rest of this chapter, we will
consider every partition of K(W) into spanning paths to be such a coloring,
and we will say that two edges have the same color if they are in the same
path of the partition.

For every edge e = (p, q) with p, q ∈ Ext(W) let the span of e, denoted
by span(e), be the number of edges on a shortest path between p and q
that is contained in the boundary of the convex hull, i.e. span((vi, vj)) =
min{j − i, i + (2n − j) + 1} for i < j. Let E be the set of edges e between
vertices in Ext(W) such that span(e) is maximal, i.e. span(e) = n. Note that
each point p in Ext(W) is incident to exactly two edges of E and that E
defines a ”star-shaped ”cycle of length 2n + 1 in K(W).

For two arbitrary edges e = (p, q) and f = (p, s) between points in Ext(W)
that are incident to a common point p, we call the pair {e, f } a wedge and we
say that p is the apex of the wedge {e, f }. We say that a wedge is monochro-
matic if both edges have the same color. Consider the shortest path between
q and s and let V be the set of vertices in this path. A point s lies inside the
wedge {e, f } if it lies in the convex hull of V ∪ {p, q, r}.

Lemma 6.3 In every partition of K(W) into plane spanning paths, the edges in
E are partitioned into n wedges and one single edge e0. Also, the apexes of these
wedges all lie on the same side of the supporting line ` of e0 and all vertices in
Ext(W) on this side are apexes of such a wedge.

We will call these wedges the main wedges.

Proof If n = 1, then E is a triangle. As we only have two colors in this case,
the claim follows immediately. So assume n > 1.

Every non-incident pair of edges in E crosses, thus any two edges in E of the
same color must form a wedge, and there can be at most two edges in E with
the same color. As |E| = 2n+ 1, we conclude that E must be partitioned into
n wedges and one single edge e0.
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To see that all apexes lie on the same side of `, we first note that if two
points are connected by an edge in E, at most one of them can be an apex of
a wedge, as else there would be three edges of the same color. Also, there
must be n points in Ext(W) that are apexes, and none of them is incident to
e0. It follows that every edge except e0 must be incident to an apex. Thus the
vertices along the cycle defined by E alternate between being an apex and
not being an apex, except for the two vertices that are incident to e0, and as
each edge that is not incident to e0 crosses e0, this concludes the proof. �

Suppose now that we have colored E as in Lemma 6.3. Assume without loss
of generality that ` is vertical and that the apexes of the main wedges lie to
the left of `. Let v0 be the upper vertex of e0, i.e. e0 = (v0, vn+1). Consider
two arbitrary edges e and f between points in Ext(W), each with one vertex
left of ` and one vertex right of ` and assume that the left vertex of e lies
above the right vertex of f . Then e and f cross if and only if the right vertex
e lies below the right vertex of f . In other words, for e = (va, vn+b) and
f = (vi, vn+j) with 0 < a < i < n + 1 and 0 < b, j < n + 1, e and f cross if
and only if b < j.

Let the main wedge at the vertex vi for 1 ≤ i ≤ n have color c[i], i.e. the
main wedge of color c[i] consists of the edges (vi, vn+i) and (vi, vn+i+1). Let
the color of e0 be c[0]. Note that every vertex vn+i, 1 ≤ i ≤ n, is incident to
edges with color c[i] and c[i− 1]. See Figure 6.1 for an illustration.

The following lemma holds for any point set, so we state it in more general
terms.

Lemma 6.4 (Wedge Lemma) Let P be a point set and let p, q and r be points in
Ext(P). Consider the edges e = (p, q) and f = (p, r) and let W be the set of points
in R2 that lie inside the wedge {e, f }. Assume that span(e) ≥ span( f ) > 1. If
there exists a point s ∈ P that lies in W, then P does not allow a partition of K(P)
into plane spanning paths where e and f have the same color.

Proof As p, q and r are in Ext(P), the edges e and f divide Conv(P) into
three parts A, W and B, with e lying on the boundary of A and f lying on the
boundary of B. See Figure 6.2 for an illustration. As span(e) ≥ span( f ) > 1,
there are points of P \ {p, q, r} in both A and B. Let a ∈ A and b ∈ B be such
points. Assume for the sake of contradiction that there exists a partition of
K(P) into plane spanning paths where both e and f are colored red. Then
the red path must also go through a and b, and as the path is plane, the
sub-path from a to b must visit a, q, p, r, and b in this order. On the other
hand, any point in the interior of W can only be connected to p, q or r with
a red edge, as there would be a red crossing otherwise. As there is at least
one point s inside W this implies that in the red subgraph of the partition,
p, q or r has degree at least 3, so the red subgraph cannot be a path, which
is a contradiction. �
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Figure 6.1: The coloring of the edges with maximal span

For any subset R of R2, we say that R is covered by a wedge {e, f } if every
point in R lies inside the wedge {e, f }. The next lemma will show, that in
any partition of K(W) into plane spanning paths, a large part of Conv(W)
is covered by monochromatic wedges.

Any plane path with the property that every edge is between points in
Ext(W) and has span larger than 1, and that for any three consecutive points
p, q, s on this path, the span of the edge (p, s) (that is not part of the path)
is exactly 1, is called a zig-zag path. Note that any two consecutive edges of
a zig-zag path form a wedge. We say that a zig-zag path Z covers a subset
R of R2 if every point in R lies inside a wedge defined by two consecutive
edges in Z.
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Figure 6.2: An Illustration of the proof of the Wedge Lemma

Let a be the intersection of (v0, v2) and (v1, v2n) and let b be the intersection
of (vn−1, vn+1) and (vn, vn+2). Let Ta be the triangle defined by v0, v1 and a
and let Tb be the triangle defined by vn, vn+1 and b. See Figure 6.3 for an
illustration.

If n is even, we call the colors c[ n
2 ] and c[ n

2 + 1] the central colors. If n is odd,
we call the colors c[ n−1

2 ], c[ n+1
2 ] and c[ n+1

2 + 1] the central colors.

v0

v1

v2

v2n

v2n−1

Ta

a

Figure 6.3: The triangle Ta

Lemma 6.5 (Zig-zag Lemma) Let Ext(W) = {v0, v1, . . . , v2n} be enumerated
in counter-clockwise order with the edges of maximal span colored as in Lemma 6.3.
Then in every partition of K(W) into plane spanning paths, there is a monochro-
matic zig-zag path for every central color, and these zig-zag paths cover all of
Conv(W) except Ta and Tb.

The proof of this lemma is rather long and technical, so we postpone it to
the next section.
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6. Partitions into Plane Spanning Paths

With the Wedge Lemma and the Zig-zag Lemma we are able to prove Theo-
rem 6.2

Proof (of Theorem 6.2) LetW be a point set with |Ext(W)| = |W|− 1, with
Ext(W) = {v0, v1, . . . , v2n} enumerated in counter-clockwise order. We want
to show that K(W) allows a partition into plane spanning paths if and only
ifW is crossing-dominated by convex position.

If W is crossing-dominated by convex position, then it is clear that K(W)
allows a partition into plane spanning paths.

For the other direction, assume that K(W) allows a partition into plane
spanning paths. By Lemma 6.3 the edges of maximal span are partitioned
into n wedges and one single edge e0, with the apexes of the wedges all
lying on the same side of the supporting line ` of e0. Assume without loss
of generality that e0 = (v0, vn+1) and that vi, 1 ≤ i ≤ n, is the apex of the
wedge of color c[i].

We claim that vint, the unique vertex in W that is not an extreme point,
has to lie in Ta or Tb. Indeed, by the Wedge Lemma, vint cannot lie in any
monochromatic wedge. By the Zig-zag Lemma, every point in Conv(W) that
is not in Ta or Tb is covered by a monochromatic zig-zag path and therefore
lies inside a monochromatic wedge. Thus vint has to lie in Ta or Tb.

So, assume without loss of generality that vint lies in Ta. Move vint to the
other side of the edge (v0, v1) to get a new point set V in convex position. As
all crossings in K(W) also occur in K(V), V crossing-dominates W , which
concludes the proof. �

However, the statement ”K(P) allows a partition into plane spanning paths
if and only if P is crossing-dominated by convex position” is not true for
general point sets P . Figure 6.4 shows a point set Q of size 8 that allows a
partition of K(Q) into plane spanning paths. If Q was crossing-dominated
by convex position, then there would be a Hamiltonian cycle in K(Q) con-
sisting only of edges that are not crossed by any other edges [17]. But this
is not the case, as can be seen by a simple inspection, so Q is not crossing-
dominated by convex position.

6.1 Proof of the Zig-zag Lemma

Recall that Ext(W) = {v0, v1, . . . , v2n} is enumerated in counter-clockwise
order, and that we have already colored the edges of maximal span without
loss of generality in such a way that the point vi, 1 ≤ i ≤ n, is the apex of
a wedge of color c[i], and the edge e0 = (v0, vn+1) has color c[0]. We also
assumed without loss of generality that e0 is vertical with v0 above vn+1.
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6.1. Proof of the Zig-zag Lemma

Figure 6.4: A point set that is not crossing-dominated by convex position, but whose complete
geometric graph can still be partitioned into plane spanning paths

We want to show that in any partition of K(W) into plane spanning paths,
there is a monochromatic zig-zag path for every central color such that these
zig-zag paths cover all of Conv(W) except Ta and Tb. Recall that the central
colors are c[ n

2 ] and c[ n
2 + 1] if n is even and c[ n−1

2 ], c[ n+1
2 ] and c[ n+1

2 + 1] if
n is odd. The triangles Ta and Tb are defined by {v0, v1, a} and {vn, vn+1, b},
respectively, where a is the intersection of (v0, v2) and (v1, v2n), and is b be
the intersection of (vn−1, vn+1) and (vn, vn+2).

We will prove the lemma by successively coloring edges that can only be
colored with one color, that is if we were to color the edge with a different
color, we would either get a monochromatic crossing, a vertex of degree 3
in some color class, or a contradiction to the Wedge Lemma.

To illustrate the idea of the proof, we first prove the lemma for n = 5, i.e.
|Ext(W)| = 11.

6.1.1 The case n = 5

For an illustration of the proof, see Figure 6.5
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Before step 1.1 After step 1.1
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After step 2.1 After step 2.2

After step 2.3
The zig-zag paths
of the central colors

Figure 6.5: An illustration of the proof of the Zig-zag Lemma for n = 5. Red edges are drawn
dash-dotted, green edges are drawn dashed, blue edges are drawn solid and thin, purple edges
are drawn dotted, yellow edges are drawn dash-dot-dotted and black edges are drawn solid and
thick.
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6.1. Proof of the Zig-zag Lemma

We have Ext(W) = {v0, v1, . . . , v10}, enumerated in counter-clockwise order.
Let v1 be the apex of a red wedge, v2 be the apex of a green wedge, v3 be
the apex of a blue wedge, v4 be the apex of a purple wedge, and let v5 be
the apex of a yellow wedge. Finally, let the edge e0 = (v0, v6) be black. As 5
is odd there are three central colors, namely green, blue, and purple.

We will color more edges in two steps, each consisting of 3 smaller steps. In
step 1.1 we color all edges of span n− 1 = 4 that cross the edge e0. Similarly,
in step 1.2 and 1.3, we color all edges of span 3 and 2, respectively, that cross
e0. Next, in step 2.1, we color the edges of span 4 that are incident to v0 or v6
and some other point to the left of e0. Finally, in steps 2.2 and 2.3, we color
the edges of span 3 and 2, respectively, that are incident to v0 or v6 and some
other point to the left of e0. We will see that in every step the considered
edges can indeed only be colored with one color.

Step 1.1: We want to color all edges of span 4 that cross the edge e0. We
start with the edge (v3, v7). This edge crosses the purple edge (v4, v9), the
yellow edge (v5, v10), the red edge (v1, v6), as well as the black edge e0. Also,
the point v3 is already incident to two blue edges, thus the edge (v3, v7) has
to be green. Similarly, we see that (v4, v8) has to be blue, (v5, v9) has to be
purple, (v3, v10) has to be purple, (v2, v9) has to be blue, and (v1, v8) has to
be green.

Step 1.2: We want to color all edges of span 3 that cross the edge e0. We
start with the edge (v4, v7). This edge crosses, amongst others, the yellow
edge (v5, v10), the red edge (v1, v6), and the black edge e0. Also, the point v4
is already incident to two purple edges and the point v7 is already incident
to two green edges. Thus the edge (v4, v7) has to be blue. Similarly, we see
that (v5, v8) has to be purple, (v2, v10) has to be blue and (v1, v9) has to be
green.

Step 1.3: We want to color all edges of span 2 that cross the edge e0. We start
with the edge (v5, v7). This edge crosses the red edge (v1, v6), and the black
edge e0. Also, the point v5 is already incident to two yellow edges and two
purple edges, and the point v7 is already incident to two green edges. Thus
the edge (v5, v7) has to be blue. Similarly, we see that the edge (v1, v10) also
has to be blue.

Step 2.1: We color the edges of span 4 that are incident to v0 or v6 and
some other point to the left of e0. We start with the edge (v2, v6). This edge
crosses, amongst others, the blue edge (v3, v8), the purple edge (v4, v9), and
the yellow edge (v5, v10). Also, the point v2 is already incident to two green
edges. Thus the edge (v2, v6) has to be either red or black. However, if it
were black, then the point v1 would lie inside a black wedge, which is a
contradiction to the Wedge Lemma. Thus the edge (v2, v6) has to be red.
Similarly, we see that the edge (v0, v4) has to be yellow.

55



6. Partitions into Plane Spanning Paths

Step 2.2: We color the edges of span 3 that are incident to v0 or v6 and some
other point to the left of e0. We start with the edge (v3, v6). This edge crosses,
amongst others, the purple edge (v4, v9), and the yellow edge (v5, v10). Also,
the point v3 is already incident to two blue edges and the point v6 is already
incident to two red edges. Again by the Wedge Lemma, the edge (v3, v6)
cannot be black. Thus (v3, v6) has to be green. Similarly, we see that (v0, v3)
has to be purple.

Step 2.3: We color the edges of span 2 that are incident to v0 or v6 and
some other point to the left of e0. We start with the edge (v4, v6). This
edge crosses, amongst others, the yellow edge (v5, v10). Also, the point v4 is
already incident to two purple edges and two blue edges and the point v6
is already incident to two red edges. Again by the Wedge Lemma, the edge
(v4, v6) cannot be black. Thus (v4, v6) has to be green. Similarly, we see that
(v0, v2) has to be purple.

We see that there is a blue zig-zag path v1, v10, v2, v9, v3, v8, v4, v7, v5, that
covers all of Conv(W) except the two triangles defined by {v0, v1, v10} and
{v5, v6, v7}, respectively.

Also, there is a purple zig-zag path v2, v0, v3, v10, v4, v9, v5, v8, that covers all
of Conv(W) except the triangle defined by {v0, v1, v2} and the quadrilateral
defined by {v5, v6, v7, v8}.
Finally, there is a green zig-zag path v9, v1, v8, v2, v7, v3, v6, v4, that covers all
of Conv(W) except the triangle defined by {v4, v5, v6} and the quadrilateral
defined by {v0, v1, v9, v10}.
The two triangles that are not covered by any of these zig-zag paths are
exactly the triangles Ta and Tb.

6.1.2 The general case

The proof of the general case is analogous to the proof for n = 5, just with
more steps. Recall that Ext(W) = {v0, v1, . . . , vn} is enumerated in counter-
clockwise order and that without loss of generality, each vi, 1 ≤ i ≤ n, is
the apex of a main wedge of color c[i]. Also, we assumed that the edge
e0 = (v0, vn+1) is vertical, with v0 above vn+1, and has color c[0]. Note that
at the moment each color class is a zig-zag path of length 1 or 2.

We will again color more edges in two main steps, each now consisting of
n − 2 smaller steps. In the steps 1.k, 1 ≤ k ≤ n − 2, we color all edges of
span n− k that cross the edge e0. These edges are the edges (vi, vn+i−k), for
2 + k ≤ i ≤ n, and the edges (vi, vn+i+k+1), for 1 ≤ i ≤ n− k− 1.

Then, in the steps 2.k, 1 ≤ k ≤ n− 2, we color the edges of span n− k that
are incident to v0 or vn+1 and some other point to the left of e0. These edges
are the edges (v0, vn−k) and (vk+1, vn+1).
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6.1. Proof of the Zig-zag Lemma

Step 1: We will distinguish whether k is even or odd. We will maintain the
following invariants:

After step 1.k, where k is odd, we have that

(o1) for 2 + k ≤ i ≤ n, the point vi is incident, amongst others, to two edges
of each color c[i], c[i− 1], . . ., c[i− k−1

2 ] and one edge of color c[i− k+1
2 ],

(o2) for 2 ≤ j ≤ n − k, the point vn+j is incident, amongst others, to two
edges of each color c[j], c[j + 1], . . ., c[j + k−1

2 ],

(o3) for 1 ≤ i ≤ n− k− 1, the point vi is incident, amongst others, to two
edges of each color c[i], c[i + 1], . . ., c[i + k−1

2 ] and one edge of color
c[i + k+1

2 ], and

(o4) for 2 + k ≤ j ≤ n, the point vn+j is incident, amongst others, to two
edges of each color c[j− 1], c[j− 2], . . ., c[j− k+1

2 ].

After step 1.k, where k is even, we have that

(e1) for 2 + k ≤ i ≤ n, the point vi is incident, amongst others, to two edges
of each color c[i], c[i− 1], . . ., c[i− k

2 ],

(e2) for 2 ≤ j ≤ n − k, the point vn+j is incident, amongst others, to two
edges of each color c[j], c[j + 1], . . ., c[j + k

2 − 1] and one edge of color
c[j + k

2 ],

(e3) for 1 ≤ i ≤ n− k− 1, the point vi is incident, amongst others, to two
edges of each color c[i], c[i + 1], . . ., c[i + k

2 ], and

(e4) for 2 + k ≤ j ≤ n, the point vn+j is incident, amongst others, to two
edges of each color c[j− 1], c[j− 2], . . ., c[j− k

2 ] and one edge of color
c[j− k

2 − 1].

Of course there are points that satisfy for example both (e1) and (e3) after
some step. The reason we state the invariants like this is that in this form
each invariant contains exactly the information that we will need.

Note that before step 1.1, the invariants (e1)-(e4) hold for k = 0: each point
vi, 1 ≤ i ≤ n, is incident to two edges of color c[i], which implies (e1) and
(e3), and each point vn+i, 2 ≤ i ≤ n, is incident to one edge of color c[i] and
one edge of color c[i − 1], which implies (e2) and (e4), respectively, as the
sequences of colors for two edges in this two invariants are empty for k = 0.

We will also maintain that every color class is a zig-zag path.

Step 1.k, k odd: We want to color all edges of span n− k that cross the edge
e0. We start with the edges (vi, vn+i−k), for 2 + k ≤ i ≤ n. For any m with
i + 1 ≤ m ≤ n, the edge (vi, vn+i−k) crosses the edge (vm, vn+m+1), which
has color c[m]. Also, for any l with 1 ≤ l ≤ i− k− 1, the edge (vi, vn+i−k)
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crosses the edge (vl , vn+l), which has color c[l]. By invariant (e1), the vertex
vi is incident to two edges of each color c[i], c[i− 1], . . ., c[i− k−1

2 ]. By setting
j = i− k in invariant (e2), we deduce that the vertex vn+i−k is incident to two
edges of each color c[i− k], c[i− k + 1], . . ., c[i− k + k−1

2 − 1] and one edge
of color c[i − k + k−1

2 ] = c[i − k+1
2 ]. As the edge (vi, vn+i−k) also crosses e0,

which has color c[0], (vi, vn+i−k) must have color c[i− k+1
2 ] and the invariant

(o1) holds. Substituting i = j + k, we deduce that invariant (o2) holds as
well.

Note that if n is odd, we color the edge (vn, vn+2) with color c[ n+1
2 ] in step

1.(n− 2).

Now, consider the edge (vi, vn+i+k+1), for 1 ≤ i ≤ n− k− 1. For any m with
i + k + 1 ≤ m ≤ n, the edge (vi, vn+i+k+1) crosses the edge (vm, vn+m+1),
which has color c[m]. Also, for any l with 1 ≤ l ≤ i− 1, the edge (vi, vn+i+k+1)
crosses the edge (vl , vn+l), which has color c[l]. By invariant (e3), the vertex
vi is incident to two edges of each color c[i], c[i + 1], . . ., c[i + k−1

2 ]. By setting
j = i + k + 1 in invariant (e4), we deduce that the vertex vn+i+k+1 is incident
to two edges of each color c[i + k], c[i + k− 1], . . ., c[i + k + 1− k−1

2 ] and one
edge of color c[i + k + 1− k−1

2 − 1] = c[i + k+1
2 ]. As the edge (vi, vn+i+k+1)

also crosses e0, which has color c[0], (vi, vn+i+k+1) must have color c[i + k+1
2 ]

and the invariant (o3) holds. Substituting i = j − k − 1, we deduce that
invariant (o4) holds as well.

Note that if n is odd, we color the edge (v1, v2n) with color c[ n+1
2 ] in step

1.(n− 2).

None of the edges that we have colored is disjoint from its color class and
we have not colored any edges of span 1. Also, every newly colored edge
(vi, vn+i−k) is incident to exactly one edge (vi−1, vn+i−k) of the same color,
and every newly colored edge (vi, vn+i+k+1) is incident to exactly one edge
(vi−1, vn+i+k+1) of the same color. Thus each color class is still a zig-zag path.
This concludes Step 1.k for k odd.

Step 1.k, k even: We want to color all edges of span n− k that cross the edge
e0. We start with the edge (vi, vn+i−k), for 2 + k ≤ i ≤ n. For any m with
i+ 1 ≤ m ≤ n, the edge (vi, vn+i−k) crosses the edge (vm, vn+m+1), which has
color c[m]. Also, for any l with 1 ≤ l ≤ i− k− 1, the edge (vi, vn+i−k) crosses
the edge (vl , vn+l), which has color c[l]. By setting j = i − k in invariant
(o2), we deduce that the vertex vn+i−k is incident to two edges of each color
c[i − k], c[i − k + 1], . . ., c[i − k + k−2

2 ] = c[i − k
2 − 1]. By invariant (o1) the

vertex vi is incident to two edges of each color c[i], c[i− 1], . . ., c[i− k−2
2 ] and

one edge of color c[i− k
2 ]. As the edge (vi, vn+i−k) also crosses e0, which has

color c[0], (vi, vn+i−k) must have color c[i − k
2 ] and the invariant (e1) holds.

Substituting i = j + k, we deduce that invariant (e2) holds as well.
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6.1. Proof of the Zig-zag Lemma

Note that if n is even, we color the edge (vn, vn+2) with color c[ n
2 + 1] in step

1.(n− 2).

Now, consider the edge (vi, vn+i+k+1), for 1 ≤ i ≤ n− k− 1. For any m with
i + k + 1 ≤ m ≤ n, the edge (vi, vn+i+k+1) crosses the edge (vm, vn+m+1),
which has color c[m]. Also, for any l with 1 ≤ l ≤ i− 1, the edge (vi, vn+i+k+1)
crosses the edge (vl , vn+l), which has color c[l]. By setting j = i + k + 1 in
invariant (o4), we deduce that the vertex vn+i+k+1 is incident to two edges
of each color c[i + k], c[i + k − 1], . . ., c[i + k + 1− k

2 ] = c[i + k
2 + 1]. By in-

variant (o3) the vertex vi is incident to two edges of each color c[i], c[i + 1],
. . ., c[i + k−2

2 ] and one edge of color c[i + k
2 ]. As the edge (vi, vn+i+k+1) also

crosses e0, which has color c[0], (vi, vn+i+k+1) must have color c[i + k
2 ] and

the invariant (e3) holds. Substituting i = j− k− 1, we deduce that invariant
(e4) holds as well.

Note that if n is even, we color the edge (v1, v2n) with color c[ n
2 ] in step

1.(n− 2).

None of the edges that we have colored is disjoint from its color class and
we have not colored any edges of span 1. Also, every newly colored edge
(vi, vn+i−k) is incident to exactly one edge (vi, vn+i−k+1) of the same color,
and every newly colored edge (vi, vn+i+k+1) is incident to exactly one edge
(vi, vn+i+k) of the same color. Thus each color class is still a zig-zag path.
This concludes Step 1.k for k even.

Step 2: We continue with the steps 2.k, 1 ≤ k ≤ n− 2. Recall that in step 2.k
we want to color the edges of span n− k that are incident to v0 or vn+1 and
some other point to the left of e0, i.e. the edges (v0, vn−k) and (vk+1, vn+1).

In steps 2.k, we will maintain the following invariants:

After step 2.k, where k is odd, we have that

(o5) the vertex v0 is incident to two edges of each color c[n], c[n − 1], . . .,
c[n− k−1

2 ], and the vertex vn+1 is incident to two edges of each color
c[1], c[2], . . ., c[ k+1

2 ].

After step 2.k, where k is even, we have that

(e5) the vertex v0 is incident to two edges of each color c[n], c[n − 1], . . .,
c[n − k

2 + 1] and one edge of color c[n − k
2 ], and the vertex vn+1 is

incident to two edges of each color c[1], c[2], . . ., c[ k
2 ] and one edge of

color c[ k
2 + 1].

Of course, the invariants (o1)-(o4) and (e1)-(e4) still hold, but note that for
any vi, the invariants (e1) and (o1) are defined after step 1.k only for 2+ k ≤
i ≤ n, and similarly for the other invariants. Again, before step 2.1 the
invariant (e5) holds for k = 0, with the sequences of colors for two edges
being empty.
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We will again maintain that every color class is a zig-zag path.

Step 2.k, k odd: We want to color the edges (v0, vn−k) and (vk+1, vn+1). We
start with the edge (v0, vn−k). We first note that (v0, vn−k) cannot have color
c[0], as else vn would lie inside a monochromatic wedge. For any j with
1 ≤ j ≤ n− k− 1, the edge (v0, vn−k) crosses the edge (vj, vn+j), which has
color c[j]. By invariant (e3), which is defined up to step 1.(k − 1) for vn−k,
the point vn−k is incident to two edges of each color c[n− k], c[n− k + 1], . . .,
c[n− k + k−1

2 ] = c[n− k+1
2 ]. By invariant (e5), the point v0 is incident to two

edges of each color c[n], c[n− 1], . . ., c[n− k−1
2 + 1] and one edge of color

c[n− k−1
2 ]. Thus the edge (v0, vn−k) must have color c[n− k−1

2 ] and the first
half of invariant (o5) holds.

Note that if n is odd, we color the edge (v0, v2) with color c[ n+1
2 + 1] in step

1.(n− 2).

Now we color the edge (vk+1, vn+1). We again note that (vk+1, vn+1) cannot
have color c[0], as else v1 would lie inside a monochromatic wedge. For any
j with k + 2 ≤ j ≤ n, the edge (vk+1, vn+1) crosses the edge (vj, vn+j), which
has color c[j]. By invariant (e1), which is defined up to step 1.(k − 1) for
vk+1, the point vk+1 is incident to two edges of each color c[k + 1], c[k],. . .,
c[k+ 1− k−1

2 ] = c[ k+1
2 + 1]. By invariant (e5), the point vn+1 is incident to two

edges of each color c[1], c[2], . . ., c[ k−1
2 ] and one edge of color c[ k−1

2 + 1] =
c[ k+1

2 ]. Thus the edge (vk+1, vn+1) must have color c[ k+1
2 ] and the second

half of invariant (o5) also holds.

Note that if n is odd, we color the edge (vn−1, vn+1) with color c[ n−1
2 ] in step

1.(n− 2).

None of the edges that we have colored is disjoint from its color class
and we have not colored any edges of span 1. Also, every newly colored
edge (v0, vn−k) is incident to exactly one edge (v0, vn−k+1) of the same color,
and every newly colored edge (vk+1, vn+1) is incident to exactly one edge
(vk, vn+1) of the same color. Thus each color class is still a zig-zag path. This
concludes Step 2.k for k odd.

Step 2.k, k even: We again want to color the edges (v0, vn−k) and (vk+1, vn+1).
We start with the edge (v0, vn−k). We first note that (v0, vn−k) cannot have
color c[0], as else vn would lie inside a monochromatic wedge. For any j
with 1 ≤ j ≤ n− k− 1, the edge (v0, vn−k) crosses the edge (vj, vn+j), which
has color c[j]. By invariant (o3), which is defined up to step 1.(k− 1) for vn−k,
the point vn−k is incident to two edges of each color c[n− k], c[n− k + 1], . . .,
c[n − k + k−2

2 ] = c[n − k
2 − 1] and one edge of color c[n − k

2 ]. By invariant
(o5), the point v0 is incident to two edges of each color c[n], c[n − 1], . . .,
c[n− k−2

2 ] = c[n− k
2 + 1]. Thus the edge (v0, vn−k) must have color c[n− k

2 ]
and the first half of invariant (e5) holds.
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6.1. Proof of the Zig-zag Lemma

Note that if n is even, we color the edge (v0, v2) with color c[ n
2 + 1] in step

1.(n− 2).

Now we color the edge (vk+1, vn+1). We again note that (vk+1, vn+1) cannot
have color c[0], as else v1 would lie inside a monochromatic wedge. For any
j with k + 2 ≤ j ≤ n, the edge (vk+1, vn+1) crosses the edge (vj, vn+j), which
has color c[j]. By invariant (o1), which is defined up to step 1.(k − 1) for
vk+1, the point vk+1 is incident to two edges of each color c[k + 1], c[k], . . .,
c[k+ 1− k−2

2 ] = c[ k
2 + 2] and one edge of color c[ k

2 + 1]. By invariant (o5), the
point vn+1 is incident to two edges of each color c[1], c[2], . . ., c[ k

2 ]. Thus the
edge (vk+1, vn+1) must have color c[ k

2 + 1] and the second half of invariant
(e5) also holds.

Note that if n is even, we color the edge (vn−1, vn+1) with color c[ n
2 ] in step

1.(n− 2).

None of the edges that we have colored is disjoint from its color class
and we have not colored any edges of span 1. Also, every newly colored
edge (v0, vn−k) is incident to exactly one edge (v2n, vn−k) of the same color,
and every newly colored edge (vk+1, vn+1) is incident to exactly one edge
(vk+1, vn+2) of the same color. Thus each color class is still a zig-zag path.
This concludes Step 2.k for k even.

Wrapping up: We have now finished coloring the edges that we wanted to
color. It remains to show that the zig-zag paths of the central colors cover
all of Conv(W) except the two triangles Ta and Tb. We distinguish whether
n is even or odd.

We start with the case that n is odd, i.e. the central colors are c[ n−1
2 ], c[ n+1

2 ]

and c[ n+1
2 + 1]. Recall that in step 1.(n − 2) we have colored the edges

(v1, v2n) and (vn, vn+2) with color c[ n+1
2 ]. As each color class is a zig-zag

path, this implies that the zig-zag path of color c[ n+1
2 ] already covers all of

Conv(W) except the two triangles T1 and T2, defined by {v0, v1, v2n} and
{vn, vn+1, vn+2}, respectively. Recall that in step 2.(n− 2) we have colored
the edge (v0, v2) with color c[ n+1

2 + 1] and the edge (vn−1, vn+1) with color
c[ n−1

2 ]. As each color class is a zig-zag path, this implies that the zig-zag
path of color c[ n+1

2 + 1] covers all of T1 except Ta. Analogously, the zig-zag
path of color c[ n−1

2 ] covers all of T2 except Tb. Thus the zig-zag paths of
the central colors cover all of Conv(W) except the two triangles Ta and Tb,
which is what we claimed.

Finally, we consider the case where n is even, i.e. the central colors are c[ n
2 ]

and c[ n
2 + 1]. Recall that in step 1.(n− 2) we have colored the edge (v1, v2n)

with color c[ n
2 ] and (vn, vn+2) with color c[ n

2 + 1]. Recall that in step 2.(n− 2)
we have colored the edge (v0, v2) with color c[ n

2 + 1] and (vn−1, vn+1) with
color c[ n

2 ]. As each color class is a zig-zag path, this implies that the zig-zag
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6. Partitions into Plane Spanning Paths

path of color c[ n
2 ] covers all of Conv(W) except the two triangles T1 and

T2, defined by {v0, v1, v2n} and {vn−1, vn, vn+1}, respectively. Analogously,
the zig-zag path of color c[ n

2 + 1] covers all of Conv(W) except the two
triangles T3 and T4, defined by {v0, v1, v2} and {vn, vn+1, vn+2}, respectively.
Thus, the two zig-zag path of the central colors cover all of Conv(W) except
T1 ∩ T3 = Ta and T2 ∩ T4 = Tb. This concludes the proof.

62



Chapter 7

Coloring Line Segment Arrangements

In this chapter we consider the more general problem of coloring the seg-
ments in a line segment arrangement in a way such that no two crossing
segments get the same color. Of course, every line segment arrangement
can be interpreted as a geometric graph, the vertices being the endpoints of
the segments.

More specifically, we consider the following problem: Given an arrangement
of line segments, where some segments are already colored, can we extend
this partial coloring to a coloring of the whole arrangement in a way that we
do not get any monochromatic crossings? We first only allow three colors,
red, blue and green, but we later generalize the results for more colors.

Theorem 7.1 It is NP-complete to decide whether a partial 3-coloring of a line
segment arrangement can be extended to a complete 3-coloring of the arrangement
without monochromatic crossings.

Proof We will first prove NP-hardness by reduction from Planar 3-SAT
[15]. For any Planar 3-SAT formula we construct a partially 3-colored line
segment arrangement with the property that the partial 3-coloring can be
extended to a complete 3-coloring without monochromatic crossings if and
only if the Planar 3-SAT formula is satisfiable.

Let F be a Planar 3-SAT formula and let G(F) be its associated graph, whose
vertex set consists of a vertex vX for every variable X and a vertex vC for
every clause C, with an edge between vX and vC if and only if X or ¬X
appears in C. By definition of Planar 3-SAT, G(F) is planar. Consider a
plane straight-line drawing of G(F). Note that Fáry’s theorem assures that
such a drawing always exists. We will mimic the formula F by constructing
partially 3-colored line segment-configurations, called gadgets, that serve as
variables, negations and disjunctions, and concatenating them according to
the graph G(F).
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7. Coloring Line Segment Arrangements

We construct a value gadget as an uncolored segment, crossed by a short
green segment. In the whole proof, we call a segment short if it only crosses
one segment of the arrangement. The uncolored segment can thus only be
colored red or blue, and we will interpret red as ”1” and blue as ”0”. For
the variable gadgets, we can thus use value gadgets. For a NOT-gadget, we
just cross two value gadgets. Similarly, we can also construct turns or copy
a variable, if needed. See Figure 7.1 for a drawing of these constructions.

Figure 7.1: A value-gadget (left), a NOT-gadget (middle) and a gadget to copy a variable
(right). Green segments are drawn dashed.

We now construct an OR-gadget, as depicted in Figure 7.2. Let X and Y
be the input values and let Z be the output value. Denote the uncolored
segments corresponding to the values X, Y and Z by x, y and z, respectively.
Place x, y and z such that z lies between x and y. Then, place two uncolored
segments a and b such that a crosses x and z, b crosses y and z and a and
b cross each other. Next, place four uncolored segments c, d, e and f , such
that c crosses x and z, d crosses x and c, e crosses y and z, and f crosses y
and e. Finally, cross c and e with short red segments, as well as d and f with
short blue segments.

We will now show that this construction indeed is an OR-gadget. First as-
sume that both input value segments x and y have the same color, without
loss of generality red. Then both a and b can only be blue or green, and as
they cross, one must be blue. Thus the output value segment z must be red
again. We can complete the coloring by coloring d and f green and c and e
blue. Now, assume that the input value segments have different colors, with-
out loss of generality say that x is red and y is blue. Then d must be green
and therefore c has to be blue, implying that z is again red. Also, e and f
must be green and red, respectively. We can finish the coloring by coloring
b green and a blue. Summarizing, if both input value segments are red, or
one of them is red and the other one blue, then the output value segment
must be red. If however both input value segments are blue, the also the
output value segment has to be blue. Thus our construction is indeed an
OR-gadget.

To build a clause gadget we can concatenate two OR-gadgets, taking the
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Figure 7.2: An OR-gadget. Green segments are drawn dashed, blue segments are dotted, and
red segments are dash-dotted.

output value segment of the first one as input value segment of the second
one, and then cross the last output value segment with a short blue segment,
enforcing that the clause must be satisfied. Thus, if we can extend the partial
coloring to a complete coloring without monochromatic crossings, then the
Planar 3-SAT formula is satisfiable and a satisfiable assignment is given by
the colors of the variable segments. On the other hand, given a satisfying as-
signment, coloring the value segments accordingly induces a larger partial
coloring of the line segment arrangement, where the only uncolored edges
are in the OR-gadgets. As shown above, the coloring can then be completed
without getting any monochromatic crossings. As each gadget only requires
a constant number of segments and each planar graph can be drawn with
straight lines on a grid of polynomial size in polynomial time, the line seg-
ment arrangement can be constructed in polynomial time, which finishes
the NP-hardness proof.

On the other hand, given a complete coloring of a line segment arrangement,
we can check whether there are monochromatic crossings in polynomial
time, as there are only polynomially many crossings. Thus the problem is
in NP , which completes the proof. �

As every line segment arrangement also is a geometric graph, we immedi-
ately get the following corollary:

Corollary 7.2 It isNP-complete to decide whether a partial 3-coloring of the edges
of a geometric graph can be extended to a complete 3-coloring without monochro-
matic crossings.

We can also do the same for more than three colors:
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7. Coloring Line Segment Arrangements

Theorem 7.3 For any k ∈N, k ≥ 3, it isNP-complete to decide whether a partial
k-coloring of a line segment arrangement can be extended to a complete k-coloring
of the arrangement without monochromatic crossings.

Proof Do the same construction as in the proof of Theorem 7.1, with the
slight modification that all uncolored segments are also crossed by a short
segment of every color except red, blue and green. As k is a fixed constant,
all gadgets still have constant size. Again, every uncolored segment can only
be colored red, blue or green, just as in the proof of Theorem 7.1, and all
arguments work analogously. �

We can again state this result in terms of geometric graphs.

Corollary 7.4 For any k ∈ N, k ≥ 3, it is NP-complete to decide whether a
partial k-coloring of the edges of a geometric graph can be extended to a complete
k-coloring without monochromatic crossings.

66



Chapter 8

Conclusion

We have reduced the problem of finding a partition of a complete geometric
graph into plane spanning double stars to the problem of finding an ex-
pandable perfect matching on its vertex set. We gave a necessary, as well as
a sufficient condition for a matching to be expandable and we proved that it
can be decided in polynomial time whether a matching is expandable. How-
ever, the necessary and the sufficient condition are not the same and hence
we still lack a nice characterization of expandable matchings.

Question 8.1 Can we characterize all expandable matchings?

We also showed that finding a large packing with plane spanning double
stars is equivalent to finding a large expandable matching. We used this
to construct large packings for complete geometric graphs drawn on a few
special point sets.

Question 8.2 How many plane spanning double stars can be packed into any com-
plete geometric graph?

One way to give a lower bound for this number would be to find a large set
L of pairwise non-parallel lines with the property that there is at least one
vertex of the complete geometric graph in each unbounded region formed
by L.

Question 8.3 Let P be a point set and let L be a set of lines such that there is at
least one point of P in every unbounded region formed by L. How large can L be?

The author suspects that L could always have linear size, which would imply
that a linear number of plane spanning double stars could be packed into
any complete geometric graph.

We also found some point sets whose complete geometric graphs cannot
be partitioned into plane spanning double stars. This of course raises the
following question:
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8. Conclusion

Question 8.4 Can the complete geometric graphs that do not allow a partition into
plane spanning double stars still be partitioned into plane spanning trees?

This question can be answered positively for the bumpy wheel BW10, but
remains open for larger graphs.

As for partitions into plane spanning paths, we showed that a complete
geometric graph, drawn on a point set with exactly one point not on the
boundary of the convex hull, can be partitioned into plane spanning paths
if and only if the point set is crossing-dominated by convex position. We
also gave an example which shows that this is not true for general point
sets. Interestingly, the partition into plane spanning paths in this example is
combinatorially different from any partition into plane spanning paths of a
complete geometric graph drawn on a point set in convex position.

Question 8.5 Let P be a point set such that K(P) allows a partition into plane
spanning paths that is combinatorially equivalent to a partition into plane spanning
paths of a complete geometric graph drawn on a point set in convex position. Does
this imply that P is crossing-dominated by convex position?

Question 8.6 Can we characterize the point sets whose complete geometric graphs
allow a partition into plane spanning paths?

Finally, the question that motivated this thesis remains open:

Question 8.7 Does every complete geometric graph with an even number of ver-
tices allow a partition of its edge set into plane spanning trees?
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